精英家教网 > 高中数学 > 题目详情

甲、乙两名教师进行乒乓球比赛,采用七局四胜制(先胜四局者获胜).若每一局比赛甲获胜的概率为,乙获胜的概率为,现已赛完两局,乙暂时以20领先.

(1)求甲获得这次比赛胜利的概率;

(2)设比赛结束时比赛的局数为随机变量X,求随机变量X的概率分布和数学期望EX.

 

【答案】

(1) 甲获得这次比赛胜利的概率(2) X的概率分布为:

X

4

5

6

7

P

?

?

?

?

【解析】

试题分析:1)甲获得这次比赛胜利情况有二,一是比赛六局结束,甲连续赢了四局,一是比赛了七局,甲在后五局中赢了四局,且最后一局是甲赢,显然这两种情况彼此互斥,故分别计算出这两个事件的概率,求其和即得甲获得这次比赛胜利的概率.(2)设比赛结束时比赛的局数为,由题意得随机变量可能的取值为4,5,6,7,分别求出随机变量的概率,从而得分布列和数学期望.本题考查次独立重复试验中恰好发生次的概率,解题的关键是正确理解两个事件、“甲获得这次比赛胜利”,再由概率的计算公式计算出概率.本题是概率中的有一定综合性的题,对事件正确理解与分类是很关键.

试题解析:(1)设甲获胜为事件A,则甲获胜包括甲以42获胜和甲以43获胜两种情况.

设甲以42获胜为事件A1, 2

设甲以43获胜为事件A2, 5

P(A)=. 6

(2)随机变量可能的取值为4,5,6,7,

=.

.

.

.

X的概率分布为:

X

4

5

6

7

P

?

?

?

?

12

考点:离散型随机变量及其分布列;相互独立事件的概率乘法公式;离散型随机变量的期望与方差.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲,乙两名教师进行乒乓球比赛,采用七局四胜制(先胜四局者获胜),若每一局比赛甲获胜的概率为
2
3
,乙获胜的概率为
1
3
,现已赛完两局,乙暂时以2:0领先
(1)求再赛三局结束这次比赛的概率.
(2)求甲获得这次比赛胜利的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两名教师进行乒乓球比赛,采用七局四胜制(先胜四局者获胜).若每一局比赛甲获胜的概率为
2
3
,乙获胜的概率为
1
3
.现已赛完两局,乙暂时以2:0领先.
(1)求甲获得这次比赛胜利的概率;
(2)设比赛结束时比赛的总局数为随机变量ξ,求随机变量ξ的分布列和数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲、乙两名教师进行乒乓球比赛,采用七局四胜制(先胜四局者获胜).若每一局比赛甲获胜的概率为
2
3
,乙获胜的概率为
1
3
.现已赛完两局,乙暂时以2:0领先.
(1)求甲获得这次比赛胜利的概率;
(2)设比赛结束时比赛的总局数为随机变量ξ,求随机变量ξ的分布列和数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省豫南九校高三(上)第二次联考数学试卷(理科)(解析版) 题型:解答题

甲、乙两名教师进行乒乓球比赛,采用七局四胜制(先胜四局者获胜).若每一局比赛甲获胜的概率为,乙获胜的概率为.现已赛完两局,乙暂时以2:0领先.
(1)求甲获得这次比赛胜利的概率;
(2)设比赛结束时比赛的总局数为随机变量ξ,求随机变量ξ的分布列和数学期望E(ξ).

查看答案和解析>>

同步练习册答案