精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}的前n项和为Tn= n2 n,且an+2+3log4bn=0(n∈N*
(1)求{bn}的通项公式;
(2)数列{cn}满足cn=anbn , 求数列{cn}的前n项和Sn
(3)若cn m2+m﹣1对一切正整数n恒成立,求实数m的取值范围.

【答案】
(1)解:由Tn= n2 n,易得an=3n﹣2代入到an+2+3log4bn=0(n∈N*)根据对数的运算性质化简bn= (n∈N*),
(2)解:cn=anbn= ,∴

两式相减整理得


(3)解:cn=anbn=(3n﹣2) ∴cn+1﹣cn=(3n+1) ﹣(3n﹣2) =9(1﹣n) (n∈N*),

∴当n=1时,c2=c1=

当n≥2时,cn+1<cn,即c1=c2>c3>…>cn

∴当n=1时,cn取最大值是 ,又cn m2+m﹣1对一切正整数n恒成立∴ m2+m﹣1≥ ,即m2+4m﹣5≥0,

解得:m≥1或m≤﹣5.


【解析】(1)由Tn= n2 n,先求数列{an}的通项公式;代入到an+2+3log4bn=0(n∈N*)根据对数的运算性质化简即可求出{bn}的通项公式;(2)把第一问求出的两数列的通项公式代入cn=anbn中,确定出cn的通项公式,从而求数列{cn}的前n项和Sn;(3)表示出cn+1﹣cn , 判断得到其差小于0,故数列{cn}为递减数列,令n=1求出数列{cn}的最大值,然后原不等式的右边大于等于求出的最大值,列出关于m的一元二次不等式,求出不等式的解集即为实数m的取值范围.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一缉私艇发现在方位角45°方向,距离12海里的海面上有一走私船正以10海里/小时的速度沿方位角为105°方向逃窜,若缉私艇的速度为14海里/小时,缉私艇沿方位角45°+α的方向追去,若要在最短的时间内追上该走私船,求追击所需时间和α角的正弦.(注:方位角是指正北方向按顺时针方向旋转形成的角,设缉私艇与走私船原来的位置分别为A、C,在B处两船相遇).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱柱中, 底面,底面为菱形, 交点,已知,.

)求证: 平面

)求证: 平面

)设点内(含边界), ,说明满足条件的点的轨迹,并求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,底面 分别是棱的中点.

(Ⅰ)求证:平面

(Ⅱ)若线段上的点满足平面平面,试确定点的位置,并说明理由.

(Ⅲ)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体的棱长为的交点,的中点.

(I)求证:直线平面

(II)求证:平面

(III)二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|cosx|sinx,给出下列四个说法:
①f(x)为奇函数; ②f(x)的一条对称轴为x=
③f(x)的最小正周期为π; ④f(x)在区间[﹣ ]上单调递增;
⑤f(x)的图象关于点(﹣ ,0)成中心对称.
其中正确说法的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某地区儿童的身高与体重的一组数据,我们用两种模型①,②拟合,得到回归方程分别为 ,作残差分析,如表:

身高

60

70

80

90

100

110

体重

6

8

10

14

15

18

0.41

0.01

1.21

-0.19

0.41

-0.36

0.07

0.12

1.69

-0.34

-1.12

(Ⅰ)求表中空格内的值;

(Ⅱ)根据残差比较模型①,②的拟合效果,决定选择哪个模型;

(Ⅲ)残差大于的样本点被认为是异常数据,应剔除,剔除后对(Ⅱ)所选择的模型重新建立回归方程.

(结果保留到小数点后两位)

附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点

(Ⅰ)当直线过点且与圆心的距离为时,求直线的方程.

(Ⅱ)设过点的直线与⊙交于 两点,且,求以线段为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若在区间上单调递增,求实数的取值范围;

(2)若存在唯一整数,使得成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案