精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x(1+a|x|).设关于x的不等式f(x+a)<f(x)的解集为A,若 ,则实数a的取值范围是( )
A.
B.
C.
D.

【答案】A
【解析】解:取a=﹣ 时,f(x)=﹣ x|x|+x,
∵f(x+a)<f(x),
∴(x﹣ )|x﹣ |+1>x|x|,
(1)x<0时,解得﹣ <x<0;
(2)0≤x≤ 时,解得0
(3)x> 时,解得
综上知,a=﹣ 时,A=(﹣ ),符合题意,排除B、D;
取a=1时,f(x)=x|x|+x,
∵f(x+a)<f(x),∴(x+1)|x+1|+1<x|x|,
(1)x<﹣1时,解得x>0,矛盾;
(2)﹣1≤x≤0,解得x<0,矛盾;
(3)x>0时,解得x<﹣1,矛盾;
综上,a=1,A=,不合题意,排除C,
故选A.
【考点精析】本题主要考查了函数单调性的性质的相关知识点,需要掌握函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,曲线是一条居民平时散步的小道,小道两旁是空地,当地政府为了丰富居民的业余生活,要在小道两旁规划出两地来修建休闲活动场所,已知空地和规划的两块用地(阴影区域)都是矩形,,若以所在直线为轴,为原点,建立如图平面直角坐标系,则曲线的方程为,记,规划的两块用地的面积之和为.(单位:)

(1)求关于的函数

(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是各项均为正数的等差数列,其中,且成等比数列;数列的前项和为,满足.

1)求数列的通项公式;

2)如果,设数列的前项和为,是否存在正整数,使得成立,若存在,求出的最小值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在平面上,点,点在单位圆上且 .

(1)若点,求的值:

(2)若,四边形的面积用表示,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 =1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于O、A、B三点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为 ,则p=(
A.1
B.
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018河南安阳市高三一模如下图在平面直角坐标系直线与直线之间的阴影部分即为区域中动点的距离之积为1

)求点的轨迹的方程

)动直线穿过区域分别交直线两点若直线与轨迹有且只有一个公共点求证 的面积恒为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)=x2+bx+c有两个零点1和﹣1

1)求fx)的解析式;

2)设gx,试判断函数gx)在区间(﹣11)上的单调性并用定义证明;

3)由(2)函数gx)在区间(﹣11)上,若实数t满足gt1)﹣g(﹣t)>0,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一只药用昆虫的产卵数y与一定范围内的温度x有关, 现收集了该种药用昆虫的6组观测数据如下表:

温度x/C

21

23

24

27

29

32

产卵数y/

6

11

20

27

57

77

经计算得:

,线性回归模型的残差平方和e8.0605≈3167,其中xi, yi分别为观测数据中的温度和产卵数,i=1, 2, 3, 4, 5, 6.

()若用线性回归模型,求y关于x的回归方程=x+(精确到0.1);

()若用非线性回归模型求得y关于x的回归方程为=0.06e0.2303x,且相关指数R2=0.9522.

( i )试与()中的回归模型相比,用R2说明哪种模型的拟合效果更好.

( ii )用拟合效果好的模型预测温度为35C时该种药用昆虫的产卵数(结果取整数).

附:一组数据(x1,y1), (x2,y2), ...,(xn,yn ), 其回归直线=x+的斜率和截距的最小二乘估计为

=;相关指数R2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,内角所对的边分别为,已知

(Ⅰ)求角的值;

(Ⅱ)记,求的取值范围.

查看答案和解析>>

同步练习册答案