精英家教网 > 高中数学 > 题目详情

已知函数

(I)求函数的单调递减区间;

(II)若上恒成立,求实数的取值范围;

(III)过点作函数图像的切线,求切线方程

 

【答案】

(I);(II) ;(III).

【解析】

试题分析:(I)本题函数式是一个乘积的形式.求函数的单调递减区间,令导函数小于零,可求得x的范围,本小题两个知识点要注意.首先是定义域x>0;其次是含对数的不等式的解法.(II)关于恒成立的问题通过整理后用分离变量较好,最小值在的定义域上,通过求导可知函数的单调性即可求出函数g(x)的最大值.本小题涉及对数函数的求导和分式函数的求导,要认真对待.(III)求函数的切线,首先判断该点有没有在函数图像上.通过分析A点不在函数图像上.通过假设切点的坐标.求出在切点的切线的斜率,通过A点和切点再算一次斜率即可得一个等式.通过研究该等式的解的情况即可得切线的方程.本小题要具备估算的能力.含对数的函数要关注定义域的范围,通过求导了解函数的图像的走向是解题的关键. 

试题解析:(Ⅰ)                          2分

函数的单调递减区间是;                  4分

(Ⅱ)

            6分

,函数单调递减;

,函数单调递增;

最小值实数的取值范围是;  7分

(Ⅲ)设切点

,当是单调递增函数  10分

最多只有一个根,又

得切线方程是.                        12分

考点:1.通过求导数求函数的单调区间.2.函数的恒成立问题.3.函数的切线方程

 

练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年湖北省荆州市高三(上)12月质量检查数学试卷Ⅰ(理科)(解析版) 题型:解答题

已知函数
(I )求函数f(x)的周期和最小值;
(II)在锐角△ABC中,若f(A)=1,,,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省临沂市临沭县高三(上)期中数学试卷(理科)(解析版) 题型:解答题

已知函数
(I)求f(x)的值域;
(II)试画出函数f(x)在区间[-1,5]上的图象.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省实验中学高三(上)第二次月考数学试卷(理科)(解析版) 题型:解答题

已知函数
(I)求函数f(x)图象的对称中心和单调递增区间;
(II)△ABC中,角A,B,C的对边分别是a,b,c,且满足a,b,c依次成等比数列,求f(B)的最值.

查看答案和解析>>

科目:高中数学 来源:2012年天津市河北区高考数学一模试卷(理科)(解析版) 题型:解答题

已知函数
(I)求f(x)的单调递增区间;
(II)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知成等差数列,且=9,求a的值.

查看答案和解析>>

科目:高中数学 来源:2013年北京市顺义区高考数学二模试卷(文科)(解析版) 题型:解答题

已知函数
(I)求的值;
(II)求函数f(x)的最小正周期及单调递减区间.

查看答案和解析>>

同步练习册答案