精英家教网 > 高中数学 > 题目详情

【题目】定义集合与集合之差是由所有属于且不属于的元素组成的集合,记作 .已知集合

)若集合,写出集合的所有元素;

)从集合选出10个元素由小到大构成等差数列,其中公差的最大值和最小值分别是多少?公差为的等差数列各有多少个?

)设集合,且集合中含有10个元素,证明:集合中必有10个元素组成等差数列.

【答案】248163264;(只有1个,d=1有91个;()见解析

【解析】

(Ⅰ)根据题意,分析集合T的元素,结合MN的含义分析可得答案;(Ⅱ)根据题意,由等差数列的性质分析公差的最大、最小值,据此分析等差数列的数目,相加即可得答案;(Ⅲ)根据题意,将集合S中元素列表,据此分析集合集合SA中的元素,由反证法分析可得结论.

)根据题意,集合 ;

则集合 的所有元素是: 248163264

)当首项是1,末项是100时,公差最大为11,即

这样的数列只有1个:11223344556677889100

当选取的10个数是连续自然数时,公差最小为1,即d=1

这样的数列首项可以是123,…,91中的任何一个,

因此共有91个公差为1的等差数列;

)将集合中元素列表如下:

1

2

3

10

11

12

13

20

21

22

23

30

91

92

93

100

表中各行或各列的十个数分别构成等差数列.

假设存在含有10个元素的集合,使得 中不含10个元素组成的等差数列.

显然每连续10个元素中必有集合中的唯一一个元素,即表的每行、每列中必有集合中的唯一一个元素.

记表中第行第列的数为

若第 行中集合A的唯一元素为 ,则第行中 ,… 中必有集合A中元素.

若第行的第一个数在集合中,则此行余下九个数和下一行第一个数可以组成等差数列,与假设矛盾.

因此,第一列中集合的唯一元素只可能在第十行.

同理,若第行的第二个数在集合中,则此行余下八个数和下一行前两个数可以组成等差数列,与假设矛盾.

因此,第二列中集合的唯一元素只可能在第九行.

依此类推,得

此时,另一条对角线上的十个元素构成等差数列,与假设矛盾.

综上,原命题成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,右焦点为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.

(1)求椭圆的方程;

(2)如图,过定点的直线交椭圆两点,连接并延长交,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】012345这六个数字组成无重复数字的四位数.

(1)在组成的四位数中,求所有偶数的个数;

2)在组成的四位数中,求比2430大的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的离心率 ,直线 被以椭圆 的短轴为直径的圆截得的弦长为 .

(1)求椭圆 的方程;

(2)过点 的直线 交椭圆于 两个不同的点,且 ,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一枚质地均匀的硬币向上抛掷三次,下列两个事件中,是对立事件的是(

A.事件恰有两次正面向上,事件恰有两次反面向上

B.事件恰有两次正面向上,事件恰有一次正面向上

C.事件至少有一次正面向上,事件至多一次正面向上

D.事件至少有一次正面向上,事件恰有三次反面向上

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别是,且椭圆经过点.

1)求椭圆的标准方程;

2)当取何值时,直线与椭圆有两个公共点;只有一个公共点;没有公共点?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C:(a>b>0)的左、右焦点分别为,离心率为,过焦点且垂直于x轴的直线被椭圆C截得的线段长为1.

(Ⅰ)求椭圆C的方程;

(Ⅱ)已知点M(0,-1),直线l经过点N(2,1)且与椭圆C相交于A,B两点(异于点M),记直线MA的斜率为,直线MB的斜率为,证明 为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线过点,其参数方程为为参数, ),以为极点, 轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)求已知曲线和曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,矩形中,,边上异于端点的动点,,将矩形沿折叠至处,使面(如图2).点满足.

(1)证明:

(2)设,当为何值时,四面体的体积最大,并求出最大值.

查看答案和解析>>

同步练习册答案