精英家教网 > 高中数学 > 题目详情

【题目】某种产品的广告费用支出与销售额之间有如下的对应数据:

2

4

5

6

8

30

40

60

50

70

(1)画出散点图;并说明销售额y与广告费用支出x之间是正相关还是负相关?

(2)请根据上表提供的数据,求回归直线方程

(3)据此估计广告费用为10时,销售收入的值.

(参考公式:,).

【答案】(1)见解析;(2);(3)

【解析】

试题分析:(1)在坐标系内把对应的点描出即得散点图,由图可得y与x之间是正相关;
(2)求出样本点中心利用回归系数公式求出a,b,得出回归方程;
(3)把x=10代入回归方程计算,即为销售收入y的估计值.

试题解析:

(1)作出散点图如下图所示:

销售额y与广告费用支出x之间是正相关;

(2)

因此回归直线方程为

(3)时,估计的值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若正实数x,y满足x+2y+4=4xy,且不等式(x+2y)a2+2a+2xy﹣34≥0恒成立,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x=3是函数f(x)=aln(1+x)+x2﹣10x的一个极值点.
(Ⅰ)求a;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)选修44,坐标系与参数方程

已知曲线,直线为参数).

I)写出曲线的参数方程,直线的普通方程;

II)过曲线上任意一点作与夹角为的直线,交于点的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A=
(1)求A∩B;
(2)若f(x)=log2x﹣ ,x∈A∩B求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=2|x+1|﹣|x﹣1|.
(1)画出函数f(x)的图象;
(2)解不等式|f(x)|>1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分12分) 已知椭圆的左焦点及点,原点到直线的距离为

1)求椭圆的离心率

2)若点关于直线的对称点在圆上,求椭圆的方程及点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆方程()的离心率为, 短轴长为2.

(1) 求椭圆的标准方程

(2) 直线()与轴的交点为(点不在椭圆外), 且与椭圆交于两个不同的点. 若线段的中垂线恰好经过椭圆的下端点, 且与线段交于点, 求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年两会继续关注了乡村教师的问题,随着城乡发展失衡,乡村教师待遇得不到保障,流失现象严重,教师短缺会严重影响乡村孩子的教育问题,为此,某市今年要为某所乡村中学招聘储备未来三年的教师,现在每招聘一名教师需要2万元,若三年后教师严重短缺时再招聘,由于各种因素,则每招聘一名教师需要5万元,已知现在该乡村中学无多余教师,为决策应招聘多少乡村教师搜集并整理了该市100所乡村中学在过去三年内的教师流失数,得到如下的柱状图:记x表示一所乡村中学在过去三年内流失的教师数,y表示一所乡村中学未来四年内在招聘教师上所需的费用(单位:万元),n表示今年为该乡村中学招聘的教师数,为保障乡村孩子教育不受影响,若未来三年内教师有短缺,则第四年马上招聘.

(1)若n=19,求yx的函数解析式;

(2)若要求“流失的教师数不大于n”的频率不小于0.5,求n的最小值;

(3)假设今年该市为这100所乡村中学的每一所都招聘了19个教师或20个教师,分别计算该市未来四年内为这100所乡村中学招聘教师所需费用的平均数,以此作为决策依据,今年该乡村中学应招聘19名还是20名教师?

查看答案和解析>>

同步练习册答案