精英家教网 > 高中数学 > 题目详情
设l是直线,α,β是两个不同的平面(    )
A.若l//α,l//β,则α//β
B.若l//α,l⊥β,则α⊥β
C.若α⊥β,l⊥α,则l⊥β
D.若α⊥β,l//α,则l⊥β
B
设α∩β=a,若直线l//a,且l?α,l?β,则l//α,l//β,因此α不一定平行于β,故A错误;由于l//α,故在α内存在直线l′//l,又因为l⊥β,所以l′⊥β,故α⊥β,所以B正确;
若α⊥β,在β内作交线的垂线l,则l⊥α,此时l在平面β内,因此C错误;
已知α⊥β,若α∩β=a,l//a,且l不在平面α,β内,则l//α且l//β,因此D错误.
故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱柱ABCD—A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.

(1)证明B1C1⊥CE;
(2)求二面角B1­CE­C1的正弦值;
(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱中,平面.以
为邻边作平行四边形,连接

(1)求证:∥平面 ;
(2)求直线与平面所成角的正弦值;
(3)线段上是否存在点,使平面与平面垂直?若存在,求出的长;若
不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在底面为平行四边形的四棱锥中,
平面,且,点的中点.

(1)求证:
(2)求证:平面
(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥中,平面,底面是直角梯形,
.

(1)求证:平面
(2)求证:平面
(3)若的中点,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在圆锥中,已知的直径,点在底面圆周上,且的中点.

(1)证明:平面
(2)求点到面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[2013·南京模拟]已知l,m是两条不同的直线,α,β是两个不同的平面,下列命题:
①若l?α,m?α,l∥β,m∥β,则α∥β;
②若l?α,l∥β,α∩β=m,则l∥m;
③若α∥β,l∥α,则l∥β;
④若l⊥α,m∥l,α∥β,则m⊥β.
其中真命题是________(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是不同的直线,是不同的平面,有以下四个命题:
①若  
②若 
③若  
④若 
其中真命题的序号是(    )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知PA垂直于正方形ABCD所在平面,连接PB、PC、PD、AC、BD,则下列垂直关系中正确的序号是              .

①平面平面PBC ②平面平面PAD ③平面平面PCD

查看答案和解析>>

同步练习册答案