精英家教网 > 高中数学 > 题目详情

如图,四边形是正方形,平面分别为的中点.

(1)求证:平面
(2)求平面与平面所成锐二面角的大小.

(1)证明详见解答;(2)(或).

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,直三棱柱中,点上一点.

⑴若点的中点,求证平面
⑵若平面平面,求证.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在正方体中,为棱的中点.

(1)求证:∥平面
(2)求证:平面⊥平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知长方体,点的中点.

(1)求证:
(2)若,试问在线段上是否存在点使得,若存在求出,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的多面体中,

(Ⅰ)求证:
(Ⅱ)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中点.

(Ⅰ)求证:AC⊥平面BDEF;
(Ⅱ)求直线DH与平面所成角的正弦值;
(Ⅲ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知三棱柱的侧棱长和底面边长均为2,在底面ABC内的射影O为底面△ABC的中心,如图所示:

(1)联结,求异面直线所成角的大小;
(2)联结,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面是直角梯形,平面分别为的中点,.

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1.

(1)求异面直线B1C1与AC所成角的大小;
(2)若该直三棱柱ABC-A1B1C1的体积为,求点A到平面A1BC的距离.

查看答案和解析>>

同步练习册答案