精英家教网 > 高中数学 > 题目详情
6.若等差数列{an}的前7项和S7=21,且a2=-1,则a6=7.

分析 由等差数列{an}的性质可得:a1+a7=a2+a6.再利用求和公式即可得出.

解答 解:由等差数列{an}的性质可得:a1+a7=a2+a6
∴S7=21=$\frac{7({a}_{1}+{a}_{7})}{2}$=$\frac{7({a}_{2}+{a}_{6})}{2}$,且a2=-1,
则a6=7.
故答案为:7.

点评 本题考查了等差数列的通项公式求和公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.同时满足两个条件:(1)定义域内是减函数;(2)定义域内是奇函数的函数是(  )
A.f(x)=-x|x|B.$f(x)=x+\frac{1}{x}$C.f(x)=tanxD.$f(x)=\frac{lnx}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知命题p:?x∈R,|x|+x≥0;q:关于x的方程x2+mx+1=0有实数根.
(1)写出命题p的否定,并判断命题p的否定的真假;
(2)若命题“p∧q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知向量$\overrightarrow a$=(1,-1),$\overrightarrow b$=(1,2),则$\overrightarrow b-\overrightarrow a$与$\overrightarrow a+2\overrightarrow b$的夹角为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{x}{e^x}$-axlnx(a∈R)在x=1处的切线的斜率k=-1.
(1)求a的值;
(2)证明:f(x)<$\frac{2}{e}$.
(3)若正实数m,n满足mn=1,证明:$\frac{1}{e^m}+\frac{1}{e^n}$<2(m+n).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设△ABC的内角A、B、C的对边分别为a、b、c,且cosA=$\frac{3}{5}$,cosB=$\frac{5}{13}$,b=3,则c=(  )
A.$\frac{14}{5}$B.$\frac{7}{5}$C.$\frac{63}{20}$D.$\frac{33}{20}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设F1,F2分别是椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,过F1倾斜角为45°的直线l与E相交于A,B两点,且|AB|=$\frac{4a}{3}$
(Ⅰ)求E的离心率
(Ⅱ)设点P(0,-1)满足|PA|=|PB|,求E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合M={x|log3x≤1},N={x|x2+x-2≤0},则M∩N等于(  )
A.{x|-2≤x≤1}B.{x|1≤x≤3}C.{x|0<x≤1}D.{x|0<x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在锐角△ABC中,角A、B、C所对的边长分别为a、b、c,向量$\overrightarrow{m}$=(1,cosB),$\overrightarrow{n}$=(sinB,-$\sqrt{3}$),且$\overrightarrow{m}$⊥$\overrightarrow{n}$,若△ABC面积为10$\sqrt{3}$,b=7,则△ABC的周长为(  )
A.10B.20C.26D.40

查看答案和解析>>

同步练习册答案