精英家教网 > 高中数学 > 题目详情
5.已知f(x)是R上的奇函数,且当x>0时,f(x)=x2(1-x),f(x)在R上的解析式_f(x)=$\left\{\begin{array}{l}{{x}^{2}(1-x),}&{x≥0}\\{-{x}^{2}(1+x),}&{x<0}\end{array}\right.$.

分析 根据函数奇偶性的性质,利用对称关系进行求解即可.

解答 解:∵f(x)是R上的奇函数,∴f(0)=0,
当x<0时,-x>0,
则f(-x)=(-x)2(1+x)=x2(1+x),
又f(x)是R上的奇函数,
则f(-x)=x2(1+x)=-f(x),
即当x<0时f(x)=-x2(1+x).
综上f(x)=$\left\{\begin{array}{l}{{x}^{2}(1-x),}&{x≥0}\\{-{x}^{2}(1+x),}&{x<0}\end{array}\right.$,
故答案为:f(x)=$\left\{\begin{array}{l}{{x}^{2}(1-x),}&{x≥0}\\{-{x}^{2}(1+x),}&{x<0}\end{array}\right.$.

点评 本题主要考查函数解析式的求解,根据函数奇偶性的对称性进行转化求解是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.函数y=cos2x+sinx(-$\frac{π}{6}$≤x≤$\frac{π}{6}$)的最大值与最小值之和为(  )
A.$\frac{3}{2}$B.2C.0D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)为奇函数,且在(-∞,0)上是减函数,若f(-3)=0,则xf(x)<0的解集为(  )
A.(-3,0)∪(3,+∞)B.(-∞,-3)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-3,0)∪(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.A为三角形一内角,若sinA+cosA=$\frac{1}{5}$,cosA-sinA=-$\frac{7}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.曲线y=sinx(0≤x≤π)与直线$y=\frac{1}{2}$围成的封闭图形的面积是$\sqrt{3}$-$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知圆C:x2+y2-2x-1=0,直线l:3x-4y+12=0,圆C上任意一点P到直线l的距离小于2的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=sin(2x-$\frac{π}{3}$)(x∈R)的图象为C,以下结论正确的是①②.(写出所有正确结论的编号)
①图象C关于直线x=$\frac{11π}{12}$对称;
②图象C关于点($\frac{2π}{3}$,0)对称;
③函数f(x)在区间(-$\frac{π}{12}$,$\frac{5π}{2}$)内是增函数;
④由y=sin2x的图象向右平移$\frac{π}{3}$个单位长度可以得到图象C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数z=$\frac{2}{1+i}$,则|z|等于(  )
A.2B.$\sqrt{2}$C.2 $\sqrt{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=2sin(x-$\frac{π}{3}$),x∈[-π,0]的单调增区间为[-$\frac{π}{6}$,0].

查看答案和解析>>

同步练习册答案