分析 根据函数奇偶性的性质,利用对称关系进行求解即可.
解答 解:∵f(x)是R上的奇函数,∴f(0)=0,
当x<0时,-x>0,
则f(-x)=(-x)2(1+x)=x2(1+x),
又f(x)是R上的奇函数,
则f(-x)=x2(1+x)=-f(x),
即当x<0时f(x)=-x2(1+x).
综上f(x)=$\left\{\begin{array}{l}{{x}^{2}(1-x),}&{x≥0}\\{-{x}^{2}(1+x),}&{x<0}\end{array}\right.$,
故答案为:f(x)=$\left\{\begin{array}{l}{{x}^{2}(1-x),}&{x≥0}\\{-{x}^{2}(1+x),}&{x<0}\end{array}\right.$.
点评 本题主要考查函数解析式的求解,根据函数奇偶性的对称性进行转化求解是解决本题的关键.
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{2}$ | B. | 2 | C. | 0 | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-3,0)∪(3,+∞) | B. | (-∞,-3)∪(0,3) | C. | (-∞,-3)∪(3,+∞) | D. | (-3,0)∪(0,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | $\sqrt{2}$ | C. | 2 $\sqrt{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com