精英家教网 > 高中数学 > 题目详情
(本题满分18分,第(1)题4分、第(2)题8分、第(3)题6分)
已知二次曲线的方程:
(1)分别求出方程表示椭圆和双曲线的条件;
(2)对于点,是否存在曲线交直线两点,使得?若存在,求出的值;若不存在,说明理由;
(3)已知与直线有公共点,求其中实轴最长的双曲线方程.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

( 12分)如图,椭圆的方程为,其右焦点为F,把椭圆的长轴分成6等分,过每个等分点作x轴的垂线交椭圆上半部于点P1,P2,P3,P4,P5五个点,且|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=5.

(1)求椭圆的方程;
(2)设直线lF点(l不垂直坐标轴),且与椭圆交于A、B两点,线段AB的垂直平分线交x轴于点M(m,0),试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线y=一x与椭圆C: =1(a>b>0)交于A、B两点,以线段AB为直径的圆恰好经过椭圆的右焦点,则椭圆C的离心率为.
A.       B.         C.         D.4-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知椭圆(a>b>0)的离心率 
该椭圆上一点,
(I)求椭圆的方程.
(II)过点作直线与椭圆相交于点,若以为直径的圆经原点,求直线的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)设分别是椭圆的左、右焦点.
(1)若是该椭圆上的一个动点,求的最大值和最小值;
(2)设过定点的直线与椭圆交于不同的两点,且∠为锐角(其中为坐标原点),求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.一个正方形内接于椭圆,并有两边垂直于椭圆长轴且分别经过它的焦点则椭圆的离心率为( )
A. B. C. D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设椭圆的右焦点为,离心率为,则此椭圆的方程为___________

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本不题满分14分)
已知在平面直角坐标系中,向量,△OFP的面积为,且 
(1)设,求向量的夹角的取值范围;
(2)设以原点O为中心,对称轴在坐标轴上,以F为右焦点的椭圆经过点M,且
取最小值时,求椭圆的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

分别是椭圆的左右焦点,若P是该椭圆上的一个动点则最大值和最小值分别是            (   )
A.B.C.D.

查看答案和解析>>

同步练习册答案