【题目】已知函数(,是自然对数的底数).
(1)讨论的单调性;
(2)当时,,求的取值范围.
【答案】(1)答案不唯一,具体见解析(2)
【解析】
(1)求得的导函数,对分成和两种情况,分类讨论的单调区间.
(2)首先判断.解法一:构造函数,求得的导函数,对分成,两种情况进行分类讨论,结合求得的取值范围.解法二:当时,根据的单调性证得.当时,同解法一,证得此时不满足.
(1),
当时,,在上单调递减;
当时,由得,所以在上单调递减;
由得,所以在上单调递增.
综上,当时,在上单调递减;
当时,在上单调递减,在上单调递增.
(2)解法一:
当时,,即,
所以,
令,
则
若,则当时,,所以在上单调递增;
当时,
,
所以当时,单调递增,所以.
若,则,
,
由得,
所以,
所以,使得,且当时,,
所以在上单调递减,
所以当时,,不合题意.
综上,的取值范围为.
解法二:
当时,,即,
所以,
若,由(1)知:在上单调递增,
因为,所以,所以在上单调递增,
所以当时,.
若,
令,
则
所以,
,
由得,
所以,
所以,使得,且当时,,
所以在上单调递减,
所以当时,,不合题意.
综上,的取值范围为.
科目:高中数学 来源: 题型:
【题目】某游戏棋盘上标有第站,棋子开始位于第站,选手抛掷均匀骰子进行游戏,若掷出骰子向上的点数不大于,棋子向前跳出一站;否则,棋子向前跳出两站,直到跳到第站或第站时,游戏结束.设游戏过程中棋子出现在第站的概率为.
(1)当游戏开始时,若抛掷均匀骰子次后,求棋子所走站数之和的分布列与数学期望;
(2)证明:;
(3)若最终棋子落在第站,则记选手落败,若最终棋子落在第站,则记选手获胜.请分析这个游戏是否公平.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数的定义域为,若存在一次函数,使得对于任意的,都有恒成立,则称函数在上的弱渐进函数.下列结论正确的是______.(写出所有正确命题的序号)
①是在上的弱渐进函数;
②是在上的弱渐进函数;
③是在上的弱渐进函数;
④是在上的弱渐进函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C的对边分别为a,b,c.已知asin(A+B)=csin.
(1)求A;
(2)求sinBsinC的取值范围;
(3)若△ABC的面积为,周长为8,求a.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥S—ABCD中,底面ABCD为长方形,SB⊥底面ABCD,其中BS=2,BA=2,BC=λ,λ的可能取值为:①;②;③;④;⑤λ=3
(1)求直线AS与平面ABCD所成角的正弦值;
(2)若线段CD上能找到点E,满足AE⊥SE,则λ可能的取值有几种情况?请说明理由;
(3)在(2)的条件下,当λ为所有可能情况的最大值时,线段CD上满足AE⊥SE的点有两个,分别记为E1,E2,求二面角E1-SB-E2的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆:的左、右焦点分别为,,下顶点为,椭圆的离心率是,的面积是.
(1)求椭圆的标准方程.
(2)直线与椭圆交于,两点(异于点),若直线与直线的斜率之和为1,证明:直线恒过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲船在岛A的正南B处,以的速度向正北航行,,同时乙船自岛A出发以的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们所航行的时间为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com