【题目】已知函数f(x)=xlnx+(1﹣x)ln(1﹣x),x∈(0,1).
(1)求f(x)的最小值;
(2)若a+b+c=1,a,b,c∈(0,1).求证:alna+blnb+clnc≥(a﹣2)ln2.
【答案】
(1)解: ,
令 .
当 时,f′(x)<0;当 时,f′(x)>0.
所以, .
(2)证明:由a+b+c=1,a,b,c∈(0,1),得 , .
由(1),当x∈(0,1),xlnx+(1﹣x)ln(1﹣x)≥﹣ln2,
所以, , ,
blnb+clnc≥(a﹣1)ln2+(b+c)ln(1﹣a)=(a﹣1)ln2+(1﹣a)ln(1﹣a).(*)
因为a∈(0,1),由(1),alna+(1﹣a)ln(1﹣a)≥﹣ln2,
所以,(1﹣a)ln(1﹣a)≥﹣alna﹣ln2.(**)
由(*) (**),blnb+clnc≥(a﹣1)ln2﹣alna﹣ln2,
所以,alna+blnb+clnc≥(a﹣2)ln2.
【解析】(1)求函数的最值问题,需求出该函数的导函数,判断函数的单调性,求出极值点,在给定区间内求解函数的最小值;
(2)由a+b+c=1,推出,由(1)的结果转化推出,即可证明
【考点精析】本题主要考查了不等式的证明的相关知识点,需要掌握不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】小张于年初支出50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小张在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x年年底出售,其销售收入为25﹣x万元(国家规定大货车的报废年限为10年).
(1)大货车运输到第几年年底,该车运输累计收入超过总支出?
(2)在第几年年底将大货车出售,能使小张获得的年平均利润最大?(利润=累计收入+销售收入﹣总支出)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E: (a>b>0)的右准线的方程为x= ,左、右两个焦点分别为F1( ),F2( ).
(1)求椭圆E的方程;
(2)过F1 , F2两点分别作两条平行直线F1C和F2B交椭圆E于C,B两点(C,B均在x轴上方),且F1C+F2B等于椭圆E的短轴的长,求直线F1C的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱ABCD﹣A1B1C1D1中,侧面ADD1A1⊥底面ABCD,D1A=D1D= ,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
(Ⅰ)求证:A1O∥平面AB1C;
(Ⅱ)求锐二面角A﹣C1D1﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=nx﹣xn , x∈R,其中n∈N , 且n≥2.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设曲线y=f(x)与x轴正半轴的交点为P,曲线在点P处的切线方程为y=g(x),求证:对于任意的正实数x,都有f(x)≤g(x);
(Ⅲ)若关于x的方程f(x)=a(a为实数)有两个正实数根x1 , x2 , 求证:|x2﹣x1|< +2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】广东佛山某学校参加暑假社会实践活动知识竞赛的学生中,得分在[80,90)中的有16人,得分在[90,100]中的有4人,用分层抽样的方法从得分在[80,100]的学生中抽取一个容量为5的样本,将该样本看成一个整体,从中任意选取2人,则其中恰有1人分数不低于90的概率为( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com