精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=Asin(wx+φ)(x∈R,w>0,0<φ< )的部分图象如图所示.

(1)求函数f(x)的解析式;
(2)求函数g(x)=f(x﹣ )﹣f(x+ )的单调递增区间.

【答案】
(1)解:由图可知 ,可得T=π,

,则ω=2,

又图象经过( ,0),

故有2× +φ=kπ,k∈Z,得φ=﹣ +kπ,

又0<φ< ,取φ=

过(0,1)点,

所以Asinφ=1,可得A=2.

得f(x)=2sin(2x+ ).


(2)解:g(x)=f(x﹣ )﹣f(x+ )=2sin[2(x﹣ )+ ]﹣2sin[2(x+ )+ ]

=2sin2x﹣2sin(2x+ )=2sin2x﹣2sin2xcos ﹣2cos2xsin =sin2x﹣ cos2x

=2sin(2x﹣ ),

由2kπ﹣ ≤2x﹣ ≤2kπ+ ,k∈Z,

得kπ﹣ ≤x≤kπ+ ,k∈Z,

所以g(x)的单调递增区间为[kπ﹣ ,kπ+ ],k∈Z.


【解析】(1)根据三角函数图象确定A,ω和φ的值即可求函数f(x)的解析式;(2)化简g(x),然后根据三角函数的单调性进行求解即可

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】元旦期间,某轿车销售商为了促销,给出了两种优惠方案,顾客只能选择其中的一种,方案一:每满万元,可减千元;方案二:金额超过万元(含万元),可摇号三次,其规则是依次装有个幸运号、个吉祥号的一个摇号机,装有个幸运号、个吉祥号的二号摇号机,装有个幸运号、个吉祥号的三号摇号机各摇号一次,其优惠情况为:若摇出个幸运号则打折,若摇出个幸运号则打折;若摇出个幸运号则打折;若没有摇出幸运号则不打折.

(1)若某型号的车正好万元,两个顾客都选中第二中方案,求至少有一名顾客比选择方案一更优惠的概率;

(2)若你评优看中一款价格为万的便型轿车,请用所学知识帮助你朋友分析一下应选择哪种付款方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}满足a1=2,a2=4(a3﹣a4),数列{bn}满足bn=3﹣2log2an
(1)求数列{an}和{bn}的通项公式;
(2)令cn= ,求数列{cn}的前n项和Tn
(3)若λ>0,求对所有的正整数n都有2λ2﹣kλ+2>a2nbn成立的k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示, 矩形所在的平面, 分别是的中点.

(1)求证: 平面

(2)求证: .

(3)当满足什么条件时,能使平面成立?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】五一期间,某商场决定从种服装、种家电、种日用品中,选出种商品进行促销活动.

(1)试求选出种商品中至少有一种是家电的概率;

(2)商场对选出的某商品采用抽奖方式进行促销,即在该商品现价的基础上将价格提高元,规定购买该商品的顾客有次抽奖的机会: 若中一次奖,则获得数额为元的奖金;若中两次奖,则获得数额为元的奖金;若中三次奖,则共获得数额为 元的奖金. 假设顾客每次抽奖中奖的概率都是,请问: 商场将奖金数额最高定为多少元,才能使促销方案对商场有利?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂最近十年生产总量逐年上升,如表是部分统计数据:

年份

2008

2010

2012

2014

2016

生产总量(万吨)

(Ⅰ)利用所给数据求年生产总量与年份之间的回归直线方程

(Ⅱ)利用(Ⅰ)中所求出的直线方程预测该厂2018年生产总量.

(回归直线的方程: ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:

(1)画出茎叶图

(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、极差、方差,并判断选谁参加比赛比较合适?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于下列命题
①函数y=tanx在第一象限是增函数;
②函数y=cos2( ﹣x)是偶函数;
③函数y=4sin(2x﹣ )的一个对称中心是( ,0);
④函数y=sin(x+ )在闭区间[﹣ ]上是增函数;
写出所有正确的命题的题号:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某出租车公司响应国家节能减排的号召,已陆续购买了140辆纯电动汽车作为运营车辆,目前我国主流纯电动汽车按续航里程数单位:公里分为3类,即类:类: 类:,该公司对这140辆车的行驶总里程进行统计,结果如下表:

类型

已行驶总里程不超过10万公里的车辆数

10

40

30

已行驶总里程超过10万公里的车辆数

20

20

20

(1)从这140辆汽车中任取一辆,求该车行驶总里程超过10万公里的概率;

(2)公司为了了解这些车的工作状况,决定抽取了14辆车进行车况分析,按表中描述的六种情况进行分层抽样,设从类车中抽取了辆车.

的值;

如果从这辆车中随机选取两辆车,求恰有一辆车行驶总里程超过10万公里的概率.

查看答案和解析>>

同步练习册答案