分析 (Ⅰ)利用等比数列的定义进行证明即可;
(Ⅱ)对a2n-2化简,对|a2k-1-2|+|a2k-2|变形为4×($\frac{1}{{3}^{2k-1}+1}+\frac{1}{{3}^{2k}-1}$)=4×$\frac{{3}^{2k-1}+{3}^{2k}}{{3}^{2k-1}•{3}^{2k}+{3}^{2k}-{3}^{2k-1}-1}$<4×($\frac{1}{{3}^{2k-1}}+\frac{1}{{3}^{2k}}$),然后利用等比数列求和解答.
解答 证明:(Ⅰ)∵在数列{an}中,a1=1,且an+1=$\frac{{a}_{n}+4}{{a}_{n}+1}$(n∈N*)
数列{$\frac{{a}_{n}+2}{{a}_{n}-2}$}中,$\frac{{a}_{n+1}+2}{{a}_{n+1}-2}•\frac{{a}_{n}-2}{{a}_{n}+2}$=$\frac{\frac{{a}_{n}+4}{{a}_{n}+1}+2}{\frac{{a}_{n}+4}{{a}_{n}+1}-2}•\frac{{a}_{n}-2}{{a}_{n}+2}$=-3,所以数列{$\frac{{a}_{n}+2}{{a}_{n}-2}$}为首项为-3,公比为-3的等比数列;
所以$\frac{{a}_{n}+2}{{a}_{n}-2}$=-3(-3)n-1=(-3)n,所以an=$\frac{4}{(-3)^{n}-1}+2$;
(Ⅱ)由(Ⅰ)得a2n-2=$\frac{4}{{9}^{n}-1}$,所以|a1-2|+|a2-2|+|a3-2|+…+|a2n-1-2|+|a2n-2|=$\frac{4}{3+1}+\frac{4}{{3}^{2}-1}+\frac{4}{{3}^{3}+1}+…+\frac{4}{{3}^{2n-1}+1}$+$\frac{4}{{3}^{2n}-1}$;
一般的|a2k-1-2|+|a2k-2|=4×($\frac{1}{{3}^{2k-1}+1}+\frac{1}{{3}^{2k}-1}$)=4×$\frac{{3}^{2k-1}+{3}^{2k}}{{3}^{2k-1}•{3}^{2k}+{3}^{2k}-{3}^{2k-1}-1}$<4×($\frac{1}{{3}^{2k-1}}+\frac{1}{{3}^{2k}}$),
所以|a1-2|+|a2-2|+|a3-2|+…+|a2n-1-2|+|a2n-2|<4($\frac{1}{4}+\frac{1}{8}+\frac{1}{{3}^{3}}+\frac{1}{{3}^{4}}+…+\frac{1}{{3}^{2n-1}}+\frac{1}{{3}^{2n}}$)=4×[$\frac{3}{8}$+$\frac{{3}^{\frac{1}{3}}(1-\frac{1}{{3}^{2n-2}})}{1-\frac{1}{3}}$]<4×($\frac{3}{8}+\frac{1}{18}$)=$\frac{31}{18}$<$\frac{7}{4}$.
点评 考查学生对等比关系的判断能力,会利用数列的递推式的能力,以及不等式的证明能力,关键是放缩法的运用.属于难题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $-\frac{9}{16}$ | B. | $-\frac{3}{4}$ | C. | $\frac{3}{4}$ | D. | $±\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com