精英家教网 > 高中数学 > 题目详情
下列说法正确的是    .(只填正确说法序号)
①若集合A={y|y=x-1},B={y|y=x2-1},则A∩B={(0,-1),(1,0)};
是函数解析式;
③若函数f(x)在(-∞,0],[0,+∞)都是单调增函数,则f(x)在(-∞,+∞)上也是增函数;
是非奇非偶函数;
⑤函数的单调增区间是(-∞,1).
【答案】分析:由集合运算的封闭性知①不对;由x-3≥0且2-x≥0求出函数定义域是空集知②不对;因为函数的单调区间不能并在一起,可以举例加以理解知③不对;求出函数的定义域化简函数的解析式和奇偶函数的定义知④对;由x2-2x-3>0求出函数的定义域可判断⑤不对.
解答:解:①因集合A、B是数集,则A∩B也是数集,故①不对;
②、由x-3≥0且2-x≥0解得,x∈∅,则不满足函数的定义中两个非空数集,故②不对;
③、函数的单调区间不能并在一起,如y=-的增区间是(-∞,0),(0,+∞),而不是
(-∞,0)∪(0,+∞),故③不对;
④、由,解得-1≤x≤1,故函数的定义域是[-1,1],则,故④对;
⑤、由x2-2x-3>0解得,x>3或x<-1,则函数的定义域是(-∞,-1)∪(3,+∞),故⑤不对.
故答案为:④.
点评:本题考查了集合的交集运算和函数的性质应用,对于函数来说,定义域优先即先求出定义域后,再判断单调性和奇偶性,对于单调区间一定是定义域的子集,这是容易出错的地方,此题考查的知识多,以对定义理解为主,也是易错题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、某医疗研究所为了检验新开发的流感疫苗对甲型H1N1流感的预防作用,把1000名注射了疫苗的人与另外1000名未注射疫苗的人的半年的感冒记录作比较,提出假设H0:“这种疫苗不能起到预防甲型H1N1流感的作用”,并计算出P(Χ2≥6.635)≈0.01,则下列说法正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

3、下列说法正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是
②③⑤
②③⑤
.(只填正确说法序号)
①若集合A={y|y=x-1},B={y|y=x2-1},则A∩B={(0,-1),(1,0)};
②函数y=f(x)的图象与x=a(a∈R)的交点个数只能为0或1;
f(x)=lg(x+
x2+1
)
是定义在R上的奇函数;
④若函数f(x)在(-∞,0],(0,+∞)都是单调增函数,则f(x)在(-∞,+∞)上也是增函数;
⑤定义max(a,b)=
a,(a≥b)
b,(a<b)
,则f(x)=max(x+1,4-2x)的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:

在线性回归模型y=bx+a+e中,下列说法正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

变量x与变量y,w,z的对应关系如下表所示:
x 1 2 3 1 5 6
y -1 -2 -3 -4 -1 -6
w 2 0 1 2 4 8
z 0 0 0 0 0 0
下列说法正确的是(  )

查看答案和解析>>

同步练习册答案