精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)满足f(x+1)=﹣f(x﹣1),且当x∈(0,2)时,f(x)=2x , 则f(log280)=

【答案】
【解析】解:由f(x)满足f(x+1)=﹣f(x﹣1),

可得:f(x+1+1)=﹣f(x+1﹣1),即f(x+2)=﹣f(x).

∴f(x+2+2)=﹣f(x+2),即f(x+4)=f(x).

∴f(x)是周期函数,周期T=4.

由f(log280)=f(4+log25)=f(log25).

当x∈(0,2)时,f(x)=2x

那么:x﹣2∈(0,2)时,可得x∈(2,4),则f(x﹣2)=﹣f(x).

即f(x)=﹣f(x﹣2)=﹣2x﹣2

∵2<log25<4.

∴f(log25)= =

故f(log280)=

所以答案是:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】秦九韶是我国南宋时期的数学家,他在《数学九章》中提出的多项式的秦九韶算法,至今仍是比较先进的算法,如图是事项该算法的程序框图,执行该程序框图,若输入n,x的值分别为4,2,则输出v的值为(
A.5
B.12
C.25
D.50

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图的程序框图,若程序运行中输出的一组数是(x,﹣12),则x的值为(  )

A.27
B.81
C.243
D.729

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax(lnx﹣1)(a≠0).
(1)求函数y=f(x)的单调递增区间;
(2)当a>0时,设函数g(x)= x3﹣f(x),函数h(x)=g′(x),
①若h(x)≥0恒成立,求实数a的取值范围;
②证明:ln(1×2×3×…×n)2e<12+22+32+…+n2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为奇函数.
(1)求a的值;
(2)判断函数f(x)的单调性,并根据函数单调性的定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某油库的设计容量是30万吨,年初储量为10万吨,从年初起计划每月购进石油m万吨,以满足区域内和区域外的需求,若区域内每月用石油1万吨,区域外前x个月的需求量y(万吨)与x的函数关系为y= (p>0,1≤x≤16,x∈N*),并且前4个月,区域外的需求量为20万吨.
(1)试写出第x个月石油调出后,油库内储油量M(万吨)与x的函数关系式;
(2)要使16个月内每月按计划购进石油之后,油库总能满足区域内和区域外的需求,且每月石油调出后,油库的石油剩余量不超过油库的容量,试确定m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公比为q的等比数列{an}的前6项和S6=21,且4a1 ,a2成等差数列.
(1)求an
(2)设{bn}是首项为2,公差为﹣a1的等差数列,记{bn}前n项和为Tn , 求Tn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=3x2﹣4ax(a>0)与g(x)=2a2lnx+b有公共点,且在公共点处的切线方程相同,则实数b的最大值为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角三角形ABC中,9tanAtanB+tanBtanC+tanCtanA的最小值为

查看答案和解析>>

同步练习册答案