精英家教网 > 高中数学 > 题目详情
(本小题满分13分)
已知椭圆 .有相同的离心率,过点的直线,依次交于A,C,D,B四点(如图).当直线的上顶点时, 直线的倾斜角为.

(1)求椭圆的方程;
(2)求证:;
(3)若,求直线的方程.

解:(1) .(2)见解析;(3)
本试题主要是考查了椭圆方程的求解,以及利用直线与椭圆的位置关系求解直线的方程,证明线段相等的综合运用。
(1)利用椭圆的几何性质表示得到a,b,c的关系式,从而得到椭圆的方程。
(2)设直线与椭圆方程联系,借助于坐标的关系来证明相等即可。
(3)在第二问的基础上,进一步得到关于直线斜率k的表达式,化简得到直线的方程,
解:(1),因此椭圆的方程为.
(2)当直线垂直轴时,易求得
因此,
当直线不垂直轴时,设
     ①,
    ②,
,则是方程①的解, 是方程②的解.,线段AB,CD的中点重合,
(3).由(2)知,,当直线垂直轴时,不合要求;
当直线不垂直轴时,设,由(2)知,
,,


,化简可得:
  ,
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知椭圆的左顶点为A1,右焦点为F2,点P为该椭圆上一动点,则当取最小值时,的值为(  )
A.B.3C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设椭圆的方程为,过右焦点且不与轴垂直的直线与椭圆交于两点,若在椭圆的右准线上存在点,使为正三角形,则椭圆的离心率的取值范围是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.设点P是椭圆上的一点,点M、N分别是两圆:上的点,则的最小值、最大值分别为(    )
A.6,8B.2,6
C.4,8D.8,12

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的焦点与椭圆的焦点重合,则此双曲线的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知点在以坐标轴为对称轴的椭圆上,点到两焦点的距离分别为4和2,过点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆上一点作圆的两条切线,点为切点.过的直线轴, 轴分别交于点两点, 则的面积的最小值为(  )
A.B.C.1D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若椭圆上一点P到它的一个焦点的距离等于4,那么点P到另一个焦点的距离等于_______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆有公共的焦点F1,F2,P是两曲线的一个交点,则=(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案