精英家教网 > 高中数学 > 题目详情
(2012•东莞二模)对于函数
①f(x)=|x+2|,
②f(x)=(x-2)2
③f(x)=cos(x-2),
判断如下两个命题的真假:命题甲:f(x+2)是偶函数;命题乙:f(x)在(-∞,2)上是减函数,在(2,+∞)上是增函数;能使命题甲、乙均为真的所有函数的序号是(  )
分析:对于题中所给的3个函数,它们的定义域均为实数集R;于是可以先求出函数f(x+2)的解析式,①中有f(x+2)=|x+4|,②中有f(x+2)=|x|,③中有f(x+2)=cosx,然后判断f(x+2)的奇偶性;再由函数f(x)的图象可得出f(x)的单调性来.
解答:解:①函数f(x)=|x+2|,则有f(x+2)=|x+4|,显然这不是偶函数,因此①中的函数不符合要求;
②函数f(x)=|x-2|,则有f(x+2)=|x|,f(x+2)是偶函数,又由函数f(x)的图象可知f(x)在(-∞,2)上是减函数,在(2,+∞)上是增函数,所以②符合要求;
③中函数f(x)=cos(x-2),则有f(x+2)=cosx,是偶函数,但是它在(-∞,2)上没有单调性;
故均符合条件的函数为②,
故选C.
点评:本题考查了函数的奇偶性,单调性及其判断与证明;复合函数的概念,命题的概念,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•东莞二模)附加题:设函数f(x)=
1
4
x2+
1
2
x-
3
4
,对于正整数列{an},其前n项和为Sn,且Sn=f(an),n∈N*
(1)求数列{an}的通项公式;
(2)是否存在等比数列{bn},使得a1b1+a2b2+…+anbn=2n+1(2n-1)+2对一切正整数n都成立?若存在,请求出数列{bn}的通项公式;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东莞二模)甲、乙两名运动员的5次测试成绩如图所示,设s1,s2分别表示甲、乙两名运动员测试成绩的标准差,
.
x1
.
x2
分别表示甲、乙两名运动员测试成绩的平均数,则有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东莞二模)设D是不等式组
x+2y≤10
2x+y≥3
0≤x≤4
y≥1
表示的平面区域,则D中的点P(x,y)到直线x+y=10距离的最大值是
4
2
4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东莞二模)设复数z1=1+i,z2=2+bi,若z1•z2为实数,则b=(  )

查看答案和解析>>

同步练习册答案