精英家教网 > 高中数学 > 题目详情
16.斜率为$\frac{{\sqrt{2}}}{2}$的直线与焦点在x轴上的双曲线x2-$\frac{y^2}{b^2}$=1(b>0)交于不同的两点P、Q.若点P、Q在x轴上的投影恰好为双曲线的两焦点,则该双曲线的焦距为(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.4

分析 设斜率为$\frac{\sqrt{2}}{2}$的直线l:y=$\frac{\sqrt{2}}{2}$x+t,代入双曲线方程,消去y,由题意可得,方程的两根分别为-c,c.则有t=0,代入c,得到方程,再由a,b,c的关系,可得c的方程,计算即可得到所求.

解答 解:设斜率为$\frac{\sqrt{2}}{2}$的直线l:y=$\frac{\sqrt{2}}{2}$x+t,
代入双曲线方程,消去y,可得,(b2-$\frac{1}{2}$)x2-$\sqrt{2}$tx-t2-b2=0,
由于点P、Q在x轴上的射影恰好为双曲线的两个焦点,
则有上式的两根分别为-c,c.
则t=0,即有(b2-$\frac{1}{2}$)c2=b2,由于b2=c2-1,
则有2c4-5c2+2=0,
解得c2=2($\frac{1}{2}$舍去),
则c=$\sqrt{2}$.焦距为2$\sqrt{2}$.
故选:C.

点评 本题考查双曲线的方程和性质,考查直线方程和双曲线方程联立,消去未知数,运用韦达定理,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点分别为F1,F2,线段F1F2被抛物线y2=4bx的焦点分成5:3两段,则此双曲线的渐近线为(  )
A.3x±5y=0B.5x±3y=0C.$x±\sqrt{15}y=0$D.$\sqrt{15}x±y=0$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}有a1=a,a2=p(常数p>0),对任意的正整数n,Sn=a1+a2+…+an,并有Sn满足Sn=$\frac{n({a}_{n}-{a}_{1})}{2}$.
(1)求a的值;
(2)试确定数列{an}是否是等差数列,若是,求出其通项公式,若不是,说明理由;
(3)对于数列{bn},假如存在一个常数b使得对任意的正整数n都有bn<b,且$\underset{lim}{n→∞}$bn=b,则称b为数列{bn}的“上渐近值”,令pn=$\frac{{S}_{n+2}}{{S}_{n+1}}$+$\frac{{S}_{n+1}}{{S}_{n+2}}$,求数列{p1+p2+…+pn-2n}的“上渐近值”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图是函数y=sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)在区间[-$\frac{π}{6}$,$\frac{5π}{6}$]上的图象,将该图象向右平移m(m>0)个单位后,所得图象关于直线x=$\frac{π}{4}$对称,则m的最小值为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.夏威夷木瓜是木瓜类的名优品种,肉红味甜深受市民喜爱.某果农选取一片山地种植夏威夷木瓜,收获时,该果农随机选取果树20株作为样本测量它们每一株的果实产量(单位:kg),获得的所有数据按照区间(40,45],(45,50],(50,55],(55,60]进行分组,得到频率分布直方图如图.已知样本中产量在区间(45,50]上的果树株数是产量在区间(50,60]上的果树株数的$\frac{4}{3}$倍.
(1)求a,b的值;
(2)用直方图估算每一株果树产量的中位数和平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知{a}?(A∪B)?(a,b,c,d,e},且a∈A,A∩B=∅,则满足条件的集合对(A,B)有64个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C的对边分别为a,b,c,且a=$\sqrt{5}$,sinC=2sinA.
(1)求边c的长;
(2)若b=3,求△ABC面积S的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.正三棱柱ABC-A1B1C1中,所有棱长都等于a,D点为BC的中点.
(1)求证:A1B∥平面AC1D;
(2)点C到平面ADC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.来自A,B,C三所大学的优秀毕业生各两名,现安排他们前往三所中学开展宣传活动,要求每所学校由两名来自不同大学的毕业生组成,则不同的安排方案种数是(  )
A.24B.36C.48D.96

查看答案和解析>>

同步练习册答案