【题目】设函数是定义在R上的奇函数,且对任意都有,当时,,则的值为( )
A. B. 1 C. D. -2
【答案】D
【解析】
由于对任意x∈R都有f(x)=f(x+4),则4为f(x)的周期,从而f(2019)+f(2020)=f(4×504+3)+f(4×505)=f(3)+f(0)= f(-1)+f(0)=f(1)+f(0),再根据f(x)的奇偶性可得f(0)=0,代入求解即可.
由f(x)是定义在R上的奇函数,得f(0)=0,
又x∈(0,2)时,f(x)=2x,
所以f(1)=2,
因为对任意x∈R都有f(x)=f(x+4),
所以4为f(x)的周期,
所以f(2019)+f(2020)=f(4×504+3)+f(4×505)=f(3)+f(0)= f(-1)+f(0)=f(1)+f(0)=-2+0=-2.
故选:D.
科目:高中数学 来源: 题型:
【题目】袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:
(1) 取出的两球1个是白球,另1个是红球;
(2) 取出的两球至少一个是白球。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,MN分别是边长为1的正方形ABCD的边BCCD的中点,将正方形沿对角线AC折起,使点D不在平面ABC内,则在翻折过程中,有以下结论:
①异面直线AC与BD所成的角为定值.
②存在某个位置,使得直线AD与直线BC垂直.
③存在某个位置,使得直线MN与平面ABC所成的角为45°.
④三棱锥M-ACN体积的最大值为.
以上所有正确结论的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点分别为,上顶点为,若直线的斜率为1,且与椭圆的另一个交点为, 的周长为.
(1)求椭圆的标准方程;
(2)过点的直线(直线的斜率不为1)与椭圆交于两点,点在点的上方,若,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:的焦点为F,抛物线C与直线l1:的一个交点为,且(为坐标原点).
(Ⅰ)求抛物线C的方程;
(II)不过原点的直线l2与l1垂直,且与抛物线交于不同的两点A,B,若线段AB的中点为P,且|OP|=|PB|,求△FAB的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】网约车的兴起丰富了民众出行的选择,为民众出行提供便利的同时也解决了很多劳动力的就业问题,据某著名网约车公司“滴滴打车”官网显示,截止目前,该公司已经累计解决退伍军人转业为兼职或专职司机三百多万人次,梁某即为此类网约车司机,据梁某自己统计某一天出车一次的总路程数可能的取值是20、22、24、26、28、,它们出现的概率依次是、、、、t、.
(1)求这一天中梁某一次行驶路程X的分布列,并求X的均值和方差;
(2)网约车计费细则如下:起步价为5元,行驶路程不超过时,租车费为5元,若行驶路程超过,则按每超出(不足也按计程)收费3元计费.依据以上条件,计算梁某一天中出车一次收入的均值和方差.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com