精英家教网 > 高中数学 > 题目详情

【题目】设函数 的极大值为1,则函数f(x)的极小值为(
A.
B.﹣1
C.
D.1

【答案】A
【解析】解:∵ ,∴f′(x)=x2﹣1,
令f′(x)=x2﹣1=0,解得x=±1,
当x>1或x<﹣1时,f′(x)>0,
当﹣1<x<1时,f′(x)<0;
故f(x)在(﹣∞,﹣1),(1,+∞)上是增函数,在(﹣1,1)上是减函数;
故f(x)在x=﹣1处有极大值f(﹣1)=﹣ +1+m=1,解得m=
f(x)在x=1处有极小值f(1)= ﹣1+ =﹣
故选:A.
【考点精析】根据题目的已知条件,利用函数的极值与导数的相关知识可以得到问题的答案,需要掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣1|+a|x﹣1|
(I)当a=1时,解关于x的不等式f(x)≥4
(II)若f(x)≥|x﹣2|的解集包含[ ,2],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin(x+ )cosx.
(1)若0≤x≤ ,求函数f(x)的值域;
(2)设△ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且f(A)= ,b=2,c=3,求cos(A﹣B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x=3是函数f(x)=aln(1+x)+x2﹣10x的一个极值点.
(Ⅰ)求a;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题10分)选修4—4:坐标系与参数方程

已知曲线C1的参数方程为t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ

)把C1的参数方程化为极坐标方程;

)求C1C2交点的极坐标(ρ≥0,0≤θ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)选修44,坐标系与参数方程

已知曲线,直线为参数).

I)写出曲线的参数方程,直线的普通方程;

II)过曲线上任意一点作与夹角为的直线,交于点的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A=
(1)求A∩B;
(2)若f(x)=log2x﹣ ,x∈A∩B求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分12分) 已知椭圆的左焦点及点,原点到直线的距离为

1)求椭圆的离心率

2)若点关于直线的对称点在圆上,求椭圆的方程及点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产两种元件,其质量按测试指标划分为:大于或等于为正品,小于为次品.现从一批产品中随机抽取这两种元件各件进行检测,检测结果记录如下:







B






由于表格被污损,数据看不清,统计员只记得,且两种元件的检测数据的平均值相等,方差也相等.

1)求表格中的值;

2)从被检测的种元件中任取件,求件都为正品的概率.

查看答案和解析>>

同步练习册答案