精英家教网 > 高中数学 > 题目详情

【题目】如图,已知四边形为梯形,,四边形为矩形,且平面平面,又.

1)求证:

2)求点到平面的距离.

【答案】1)证明见解析;(2.

【解析】

1)取的中点,连接,利用三线合一得出,利用直线与平面垂直的判定定理可证明出平面,即可得出

2)过点在平面内作,垂足为点,证明出平面,并计算出三边边长,然后利用等面积法求出,即为点到平面的距离.

1)如下图所示,取的中点,连接

四边形为矩形,

平面平面,平面平面平面

平面

平面

四边形为梯形,

的中点,

同理可得

平面.

平面

2)如下图所示,过点在平面内作,垂足为点

由(1)知,平面平面.

平面.

由(1)知,平面平面

平面平面

平面

由于四边形为直角梯形,且

,则.

由等面积法可得.

因此,点到平面的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥S-ABCD中,四边形ABCD菱形,,平面平面 ABCD .EF 分别是线段 SCAB 上的一点, .

(1)求证:平面SAD;

(2)求平面DEF与平面SBC所成锐二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在区间上为单调递减函数.

1)求的最大值;

2)当时,方程有三个实根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长为的正方形中,线段BC的端点分别在边上滑动,且,现将分别沿ABAC折起使点重合,重合后记为点,得到三被锥.现有以下结论:

平面

②当分别为的中点时,三棱锥的外接球的表面积为

的取值范围为

④三棱锥体积的最大值为.

则正确的结论的个数为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】金石文化,是中国悠久文化之一.“是指是指石头金石文化是指在铜器或石头上刻有文字的器件.在一千多年前,有一种凸多面体工艺品,是金石文化的代表作,此工艺品的三视图是三个全等的正八边形(如图),若一个三视图(即一个正八边形)的面积是,则该工艺品共有______个面,表面积是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点O轴正半轴为极轴,已知点P的直角坐标为(1,-5),C的极坐标为,若直线l经过点P,且倾斜角为,圆C的半径为4.

(1).求直线l的参数方程及圆C的极坐标方程;

(2).试判断直线l与圆C有位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有下列四个结论,其中所有正确结论的编号是___________.

①若,则的最大值为

②若是等差数列的前项,则

③“”的一个必要不充分条件是“”;

④“”的否定为“”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知为坐标原点,点的坐标为,点的坐标为,其中..

1)若,求方程在区间内的解集;

2)若点是直线上的动点.时,设函数的值域为集合,不等式的解集为集合.恒成立,求实数的最大值;

3)若函数满足“图像关于点对称,且在取得最小值”,求满足的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】司机在开机动车时使用手机是违法行为,会存在严重的安全隐患,危及自己和他人的生命. 为了研究司机开车时使用手机的情况,交警部门调查了名机动车司机,得到以下统计:在名男性司机中,开车时使用手机的有人,开车时不使用手机的有人;在名女性司机中,开车时使用手机的有人,开车时不使用手机的有人.

(1)完成下面的列联表,并判断是否有的把握认为开车时使用手机与司机的性别有关;

开车时使用手机

开车时不使用手机

合计

男性司机人数

女性司机人数

合计

(2)以上述的样本数据来估计总体,现交警部门从道路上行驶的大量机动车中随机抽检3辆,记这3辆车中司机为男性且开车时使用手机的车辆数为,若每次抽检的结果都相互独立,求的分布列和数学期望

参考公式与数据:

参考数据:

参考公式

span>,其中.

查看答案和解析>>

同步练习册答案