精英家教网 > 高中数学 > 题目详情

【题目】(选修4﹣4:坐标系与参数方程)
已知曲线C1的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.
(1)把C1的参数方程化为极坐标方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)

【答案】
(1)解:曲线C1的参数方程式 (t为参数),

得(x﹣4)2+(y﹣5)2=25即为圆C1的普通方程,

即x2+y2﹣8x﹣10y+16=0.

将x=ρcosθ,y=ρsinθ代入上式,得.

ρ2﹣8ρcosθ﹣10ρsinθ+16=0,此即为C1的极坐标方程;


(2)解:曲线C2的极坐标方程为ρ=2sinθ化为直角坐标方程为:x2+y2﹣2y=0,

,解得

∴C1与C2交点的极坐标分别为( ),(2,


【解析】(1)对于曲线C1利用三角函数的平方关系式sin2t+cos2t=1即可得到圆C1的普通方程;再利用极坐标与直角坐标的互化公式即可得到C1的极坐标方程;(2)先求出曲线C2的极坐标方程;再将两圆的方程联立求出其交点坐标,最后再利用极坐标与直角坐标的互化公式即可求出C1与C2交点的极坐标.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】12分)已知函数fx=

1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.

2)求该函数在区间[1,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在实数集R上的函数,且y=f(x+1)是偶函数,当x1时,f(x)=2x﹣1,则f(),f(),f()的大小关系是(  )

A. f()<f()<f( B. f()<f()<f(

C. f()<f()<f( D. f()<f()<f(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,对任意实数,都有

(1)求的值并判断函数的奇偶性;

(2)已知函数

验证函数是否满足题干中的条件,即验证对任意实数是否成立

若函数,其中讨论函数的零点个数情况

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位共有老、中、青职工430,其中青年职工160人,中年职工人数是老年职工人数的2倍。为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若圆C的半径为1,圆心在第一象限,且与直线4x﹣3y=0和x轴都相切,则该圆的标准方程是(
A.(x﹣2)2+(y﹣1)2=1
B.(x﹣2)2+(y+1)2=1
C.(x+2)2+(y﹣1)2=1
D.(x﹣3)2+(y﹣1)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为棱长的正方体, 为棱的中点.

(1)求三棱锥的体积;

(2)求证: 平面.

【答案】(1);(2)见解析.

【解析】试题分析:(1)高为ED,再根据锥体体积公式计算体积(2)连接于点,根据三角形中位线性质得,再根据线面平行判定定理得结论

试题解析:(1)体积

(2)连接于点,则的中位线,即

,得到 平面.

型】解答
束】
18

【题目】已知抛物线 的焦点为圆的圆心.

(1)求抛物线的标准方程;

(2)若斜率的直线过抛物线的焦点与抛物线相交于两点,求弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=loga(1+x),g(x)=loga(1-x),(a>0a1),h(x)=f(x)-g(x).

(1)求函数h(x)的定义域

(2)判断h(x)的奇偶性,并说明理由;

(3)f(2)=1,求使h(x)>0成立的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱ABCDA1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD,.

1)证明: A1BD // 平面CD1B1;

2)求三棱柱ABDA1B1D1的体积.

查看答案和解析>>

同步练习册答案