【题目】(选修4﹣4:坐标系与参数方程)
已知曲线C1的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.
(1)把C1的参数方程化为极坐标方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)
【答案】
(1)解:曲线C1的参数方程式 (t为参数),
得(x﹣4)2+(y﹣5)2=25即为圆C1的普通方程,
即x2+y2﹣8x﹣10y+16=0.
将x=ρcosθ,y=ρsinθ代入上式,得.
ρ2﹣8ρcosθ﹣10ρsinθ+16=0,此即为C1的极坐标方程;
(2)解:曲线C2的极坐标方程为ρ=2sinθ化为直角坐标方程为:x2+y2﹣2y=0,
由 ,解得 或 .
∴C1与C2交点的极坐标分别为( , ),(2, )
【解析】(1)对于曲线C1利用三角函数的平方关系式sin2t+cos2t=1即可得到圆C1的普通方程;再利用极坐标与直角坐标的互化公式即可得到C1的极坐标方程;(2)先求出曲线C2的极坐标方程;再将两圆的方程联立求出其交点坐标,最后再利用极坐标与直角坐标的互化公式即可求出C1与C2交点的极坐标.
科目:高中数学 来源: 题型:
【题目】(12分)已知函数f(x)=
(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.
(2)求该函数在区间[1,4]上的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)是定义在实数集R上的函数,且y=f(x+1)是偶函数,当x≥1时,f(x)=2x﹣1,则f(),f(),f()的大小关系是( )
A. f()<f()<f() B. f()<f()<f()
C. f()<f()<f() D. f()<f()<f()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为,对任意实数,都有.
(1)求的值并判断函数的奇偶性;
(2)已知函数,
①验证函数是否满足题干中的条件,即验证对任意实数,是否成立;
②若函数,其中,讨论函数的零点个数情况.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍。为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为
A. 9 B. 18 C. 27 D. 36
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若圆C的半径为1,圆心在第一象限,且与直线4x﹣3y=0和x轴都相切,则该圆的标准方程是( )
A.(x﹣2)2+(y﹣1)2=1
B.(x﹣2)2+(y+1)2=1
C.(x+2)2+(y﹣1)2=1
D.(x﹣3)2+(y﹣1)2=1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为棱长的正方体, 为棱的中点.
(1)求三棱锥的体积;
(2)求证: 平面.
【答案】(1);(2)见解析.
【解析】试题分析:(1)高为ED,再根据锥体体积公式计算体积(2)连接交于点,根据三角形中位线性质得,再根据线面平行判定定理得结论
试题解析:(1)体积
(2)连接交于点,则为的中位线,即,
又面, 面,得到 平面.
【题型】解答题
【结束】
18
【题目】已知抛物线: 的焦点为圆的圆心.
(1)求抛物线的标准方程;
(2)若斜率的直线过抛物线的焦点与抛物线相交于两点,求弦长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=loga(1+x),g(x)=loga(1-x),(a>0且a≠1),若h(x)=f(x)-g(x).
(1)求函数h(x)的定义域;
(2)判断h(x)的奇偶性,并说明理由;
(3)若f(2)=1,求使h(x)>0成立的x的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD,.
(1)证明: A1BD // 平面CD1B1;
(2)求三棱柱ABD-A1B1D1的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com