【题目】已知函数在点处的切线与y轴垂直.
(1)若,求的单调区间;
(2)若,成立,求a的取值范围
【答案】(1)见解析;(2)
【解析】
(1)令f′(1)=0求出b,再根据f′(x)的符号得出f(x)的单调区间;
(2)分类讨论,分别求出在(0,e)上的最小值,即可得出a的范围.
(1),由题,
解得,由,得.
因为的定义域为,所以,
故当时,, 为增函数,
当时,,为减函数,
(2)由(1)知,
所以
(ⅰ)若,则由(1)知,即恒成立
(ⅱ)若,则且
故当时,,为增函数,
当时,,为减函数,
,即恒成立
(ⅲ)若,则且
故当时,,为增函数,
当时,,为减函数,
由题只需即可,即,解得,
而由,且,
得
(ⅳ)若,则,为增函数,且,
所以,,不合题意,舍去;
(ⅴ)若,则,在上都为增函数,且
所以,,不合题意,舍去;
综上所述,a的取值范围是
科目:高中数学 来源: 题型:
【题目】某公司的营销部门对某件商品在网上销售情况进行调查,发现当这件商品每回馈消费者一定的点数,该商品每天的销量就会发生一定的变化,经过统计得到以下表:
(1)经分析发现,可用线性回归模型拟合该商品销量(百件)与返还点数之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测若返回6个点时该商品每天销量;
(2)该公司为了在购物节期间对所有商品价格进行新一轮调整,随机抽查了上一年购物节期间60名网友的网购金额情况,得到如下数据统计表:
网购金额 (单位:千元) | 合计 | ||||||
频数 | 3 | 9 | 9 | 15 | 18 | 6 | 60 |
若网购金额超过2千元的顾客定义为“网购达人”,网购金额不超过2千元的顾客定义为“非网购达人”.该营销部门为了进步了解这60名网友的购物体验,从“非网购达人”、“网购达人”中用分层抽样的方法确定10人,若需从这10人中随机选取3人进行问卷调查.设为选取的3人中“网购达人”的人数,求的分布列和数学期望.
参考公式及数据:①,;②.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若存在实数使得则称是区间的一内点.
(1)求证:的充要条件是存在使得是区间的一内点;
(2)若实数满足:求证:存在,使得是区间的一内点;
(3)给定实数,若对于任意区间,是区间的一内点,是区间的一内点,且不等式和不等式对于任意都恒成立,求证:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆,其长轴长是短轴长的倍,过焦点且垂直于轴的直线被椭圆截得的弦长为.
(1)求椭圆的方程;
(2)点是椭圆上横坐标大于的动点,点在轴上,圆内切于,试判断点在何位置时的长度最小,并证明你的判断.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过抛物线的焦点作直线交抛物线于,两点,若,则的值为( )
A. 10 B. 8 C. 6 D. 4
【答案】B
【解析】
根据过抛物线焦点的弦长公式,利用题目所给已知条件,求得弦长.
根据过抛物线焦点的弦长公式有.故选B.
【点睛】
本小题主要考查过抛物线焦点的弦长公式,即.要注意只有过抛物线焦点的弦长才可以使用.属于基础题.
【题型】单选题
【结束】
10
【题目】已知椭圆: 的右顶点、上顶点分别为、,坐标原点到直线的距离为,且,则椭圆的方程为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点的椭圆和抛物线有相同的焦点,椭圆过点,抛物线的顶点为原点.
求椭圆和抛物线的方程;
设点P为抛物线准线上的任意一点,过点P作抛物线的两条切线PA,PB,其中A,B为切点.
设直线PA,PB的斜率分别为,,求证:为定值;
若直线AB交椭圆于C,D两点,,分别是,的面积,试问:是否有最小值?若有,求出最小值;若没有,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:实数满足不等式;
命题q:关于不等式对任意的恒成立.
(1)若命题为真命题,求实数的取值范围;
(2)若“”为假命题,“”为真命题,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com