精英家教网 > 高中数学 > 题目详情
9.${(\root{3}{x}+\frac{1}{x})^n}$的展开式中第5项是常数项,那么这个展开式中系数最大的项为(  )
A.第9项B.第8项C.第9项和第10项D.第8项和第9项

分析 根据${(\root{3}{x}+\frac{1}{x})^n}$的展开式中第5项为常数项,求得n的值,可得这个展开式中系数最大的项.

解答 解:由于${(\root{3}{x}+\frac{1}{x})^n}$的展开式中第5项是T5=${C}_{n}^{4}$•${x}^{\frac{n-16}{3}}$,为常数项,故有n-16=0,∴n=16.
故这个展开式中系数最大的项,也是二项式系数最大的项,为第9项,它的系数为${C}_{16}^{8}$,
故选:A.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2x3+3x2+1(x∈R).
(1)求函数f(x)的图象在点A(1,6)处的切线方程;
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)满足:①对于任意实数x,y都有f(x+y)+1=f(x)+f(x),且f($\frac{1}{2}$)=0;②当x>$\frac{1}{2}$时,f(x)<0.
(1)求证:f(x)=$\frac{1}{2}$+$\frac{1}{2}$f(2x);
(2)用数学归纳法证明:当x∈[$\frac{1}{{2}^{n+1}}$,$\frac{1}{{2}^{n}}$](n∈N*)时,f(x)≤1-$\frac{1}{{2}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求方程:sinx+cosx=1在[0,π]上的解.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}的通项${a_n}=\left\{\begin{array}{l}{(-2)^n}\;\;\;\;\;\;n为奇数\\ n\;\;\;\;\;\;\;\;\;\;\;\;n为偶数\end{array}\right.$,则a4•a3=(  )
A.12B.32C.-32D.48

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=loga(1+x),g(x)=loga(1-x),其中(a>0且a≠1),设h(x)=f(x)-g(x).
(1)求h(x)的定义域;
(2)判断h(x)的奇偶性,并说明理由;
(3)若a=log327+log${\;}_{\frac{1}{2}}$2,求使f(x)>1成立的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\frac{{1+\sqrt{2}cos(2x-\frac{π}{4})}}{{sin(x+\frac{π}{2})}}$.
(1)求f(x)的定义域;
(2)若角α是第四象限角,且cosα=$\frac{3}{5}$,求f(α).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-4,7),则$\overrightarrow{a}$在$\overrightarrow{b}$上的投影为(  )
A.$\sqrt{13}$B.$\frac{{\sqrt{65}}}{5}$C.13D.$\sqrt{65}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.不等式|3x-4|≤5的解集是(  )
A.{x|-$\frac{1}{3}$<x<3}B.{x|x≤-$\frac{1}{3}$或x≥3}C.{x|$\frac{1}{3}$≤x≤-3}D.{x|-$\frac{1}{3}$≤x≤3}

查看答案和解析>>

同步练习册答案