精英家教网 > 高中数学 > 题目详情
若函数对任意的恒成立,则      .

试题分析:,所以函数上单调递增,又,所以函数为奇函数,于是,因为对任意的恒成立,所以.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)="xlnx" (x 1)(ax a+1)(a∈R).
(1)若a=0,判断f(x)的单调性;.
(2)若x>1时,f(x)<0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数处有极大值
(1)求的解析式;
(2)求的单调区间;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(1)当时,求的极值;
(2)当时,讨论的单调性;
(3)若对任意的,恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.
(1)当取到极值,求的值;
(2)当满足什么条件时,在区间上有单调递增的区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)若,求函数的单调区间;
(2)若函数在区间上是减函数,求实数的取值范围;
(3)过坐标原点作曲线的切线,证明:切点的横坐标为.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数在区间上是减函数,那么的最大值为            

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=-x3+ax2-4在x=2处取得极值,若m,n∈[-1,1],则f(m)+f'(n)的最小值为( )
A.-13B.-15C.10D.15

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数yx (a>0)的单调增区间为________,单调减区间为_______.

查看答案和解析>>

同步练习册答案