精英家教网 > 高中数学 > 题目详情

在等比数列{an}中,a1•a2•a3=27,a2+a4=30.
求:(1)a1和公比q;
(2)若{an}各项均为正数,求数列{n•an}的前n项和.

解:(1)由等比数列的性质可得,a1•a2•a3==27,
∴a2=3
∵a2+a4=30
∴a4=27
=9
∴q=±3

(2)由an>0可得,n

∴3Sn=1•3+2•32+…+(n-1)•3n-1+n•3n
两式相减可得,-2Sn=30+31+…+3n-1-n•3n==

分析:(1)由已知,结合等比数列的性质可求a2,a4,由可求q,进而可求a1
(2)由an>0,结合(1)可得,n,利用错位相减可求和
点评:本题主要考查了等比数列的性质及通项公式的应用,错位相减求解数列和是数列求和的重点与难点,要注意掌握
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等比数列{an}中,a4=
2
3
 , a3+a5=
20
9

(1)求数列{an}的通项公式;
(2)若数列{an}的公比大于1,且bn=log3
an
2
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,若a1=1,公比q=2,则a12+a22+…+an2=(  )
A、(2n-1)2
B、
1
3
(2n-1)
C、4n-1
D、
1
3
(4n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,如果a1+a3=4,a2+a4=8,那么该数列的前8项和为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,a1=1,8a2+a5=0,数列{
1
an
}
的前n项和为Sn,则S5=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,an>0且a2=1-a1,a4=9-a3,则a5+a6=
81
81

查看答案和解析>>

同步练习册答案