【题目】下列函数称为双曲函数:双曲正弦:shx= ,双曲余弦:chx= ,双曲正切:thx= .
(1)对比三角函数的性质,请你找出它们的三个类似性质;
(2)求双曲正弦shx的导数,并求在点x=0处的切线方程.
科目:高中数学 来源: 题型:
【题目】已知圆 与直线 相切.
(1)求圆 的方程;
(2)过点 的直线 截圆所得弦长为 ,求直线 的方程;
(3)设圆 与 轴的负半轴的交点为 ,过点 作两条斜率分别为 的直线交圆 于 两点,且 ,证明:直线 恒过一个定点,并求出该定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆O:x2+y2=2,直线l:y=kx﹣2.
(1)若直线l与圆O交于不同的两点A,B,且 ,求k的值;
(2)若 ,P是直线l上的动点,过P作圆O的两条切线PC,PD,切点分别为C,D,求证:直线CD过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的左右焦点分别为F1 , F2 , 且F2为抛物线 的焦点,C2的准线l被C1和圆x2+y2=a2截得的弦长分别为 和4.
(1)求C1和C2的方程;
(2)直线l1过F1且与C2不相交,直线l2过F2且与l1平行,若l1交C1于A,B,l2交C1交于C,D,且在x轴上方,求四边形AF1F2C的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1= ,an+1= (n∈N*).
(1)设bn= ﹣1,证明:数列{bn}是等比数列,并求数列{an}的通项公式an;
(2)记数列{nbn}的前n项和为Tn , 求证:Tn<4.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项数列{an}满足a1=1,(n+1)a2n+1+an+1an﹣na =0,数列{bn}的前n项和为Sn且Sn=1﹣bn .
(1)求{an}和{bn}的通项;
(2)令cn= , ①求{cn}的前n项和Tn;
②是否存在正整数m满足m>3,c2 , c3 , cm成等差数列?若存在,请求出m;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com