精英家教网 > 高中数学 > 题目详情
8.已知数列{an}的前n项和Sn满足${S_n}=\frac{3n}{2}-\frac{n^2}{2},n∈{N^*}$.
(I)求{an}的通项公式;
(Ⅱ)求数列$\{\frac{1}{{{a_{2n-1}}{a_{2n+1}}}}\}$的前n项和.

分析 ( I)当n=1时,a1=S1,当n≥2时,an=Sn-Sn-1,计算即可得到{an}的通项公式;
( II)由(I)知$\frac{1}{{{a_{2n-1}}{a_{2n+1}}}}=\frac{1}{(3-2n)(1-2n)}=\frac{1}{2}(\frac{1}{2n-3}-\frac{1}{2n-1})$,运用裂项相消求和,化简即可得到所求和.

解答 解:( I)当n=1时,a1=S1=1;
当n≥2时,an=Sn-Sn-1=$\frac{3n}{2}$-$\frac{{n}^{2}}{2}$-$\frac{3(n-1)}{2}$+$\frac{(n-1)^{2}}{2}$=2-n,
故{an}的通项公式为an=2-n;
( II)由(I)知$\frac{1}{{{a_{2n-1}}{a_{2n+1}}}}=\frac{1}{(3-2n)(1-2n)}=\frac{1}{2}(\frac{1}{2n-3}-\frac{1}{2n-1})$,
则数列$\left\{{\frac{1}{{{a_{2n-1}}{a_{2n+1}}}}}\right\}的前n项和为$
Sn=$\frac{1}{2}[(\frac{1}{-1}-\frac{1}{1})+(\frac{1}{1}-\frac{1}{3})+…+(\frac{1}{2n-3}-\frac{1}{2n-1})]=\frac{n}{1-2n}$.

点评 本题考查数列的通项的求法,注意运用数列的通项和前n项和的关系,考查数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设a∈R,则“a=-1”是“直线l1:ax+2y-1=0与直线l2:x+(a-1)y-4=0平行”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.计算:
(Ⅰ)[(-2)2]${\;}^{\frac{1}{2}}$-(-$\frac{1}{8}$)0-(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+(1.5)-2+$\sqrt{(1-\sqrt{2})^{2}}$
(Ⅱ)log3$\sqrt{27}$+lg25+lg4+7log72+lg1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.不等式x2+2x<3的解集为(-3,1)(答案要求用集合形式表达)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.等比数列{an}满足a1=3,a1+a3+a5=21,则a2a4=(  )
A.6B.9C.36D.81

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若点O和点F分别为椭圆$\frac{x^2}{16}+\frac{y^2}{7}=1$的中心和左焦点,点P为椭圆上的任意一点,则$\overrightarrow{OP}•\overrightarrow{FP}$的最大值为(  )
A.18B.24C.28D.32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若圆C的圆心为(-2,1),半径为为3,则圆C的方程式(  )
A.(x-2)2+(y+1)2=3B.(x-2)2+(y+1)2=9C.(x+2)2+(y-1)2=3D.(x+2)2+(y-1)2=9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=kax-a-x(a>0且a≠1)是定义域为R的奇函数.
(Ⅰ)若f(1)>0,解不等式f(x2+2x)+f(x-4)>0;
(Ⅱ)若f(1)=$\frac{3}{2}$,求g(x)=a2x+a-2x-4f(x)在[1,+∞)上的最小值,并求此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列命题错误的是(  )
A.命题“若x2<1,则-1<x<1”的逆否命题是“若x≥1或x≤-1,则x2≥1”
B.若p:$\frac{1}{x+1}$<0,则?p:$\frac{1}{x+1}$≥0
C.命题p;存在x0∈R,使得x02+x0+1<0,则?p;任意x∈R,使得x2+x+1≥0
D.“am2<bm2”是“a<b”的充分不必要条件

查看答案和解析>>

同步练习册答案