分析 ( I)当n=1时,a1=S1,当n≥2时,an=Sn-Sn-1,计算即可得到{an}的通项公式;
( II)由(I)知$\frac{1}{{{a_{2n-1}}{a_{2n+1}}}}=\frac{1}{(3-2n)(1-2n)}=\frac{1}{2}(\frac{1}{2n-3}-\frac{1}{2n-1})$,运用裂项相消求和,化简即可得到所求和.
解答 解:( I)当n=1时,a1=S1=1;
当n≥2时,an=Sn-Sn-1=$\frac{3n}{2}$-$\frac{{n}^{2}}{2}$-$\frac{3(n-1)}{2}$+$\frac{(n-1)^{2}}{2}$=2-n,
故{an}的通项公式为an=2-n;
( II)由(I)知$\frac{1}{{{a_{2n-1}}{a_{2n+1}}}}=\frac{1}{(3-2n)(1-2n)}=\frac{1}{2}(\frac{1}{2n-3}-\frac{1}{2n-1})$,
则数列$\left\{{\frac{1}{{{a_{2n-1}}{a_{2n+1}}}}}\right\}的前n项和为$
Sn=$\frac{1}{2}[(\frac{1}{-1}-\frac{1}{1})+(\frac{1}{1}-\frac{1}{3})+…+(\frac{1}{2n-3}-\frac{1}{2n-1})]=\frac{n}{1-2n}$.
点评 本题考查数列的通项的求法,注意运用数列的通项和前n项和的关系,考查数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 18 | B. | 24 | C. | 28 | D. | 32 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (x-2)2+(y+1)2=3 | B. | (x-2)2+(y+1)2=9 | C. | (x+2)2+(y-1)2=3 | D. | (x+2)2+(y-1)2=9 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 命题“若x2<1,则-1<x<1”的逆否命题是“若x≥1或x≤-1,则x2≥1” | |
B. | 若p:$\frac{1}{x+1}$<0,则?p:$\frac{1}{x+1}$≥0 | |
C. | 命题p;存在x0∈R,使得x02+x0+1<0,则?p;任意x∈R,使得x2+x+1≥0 | |
D. | “am2<bm2”是“a<b”的充分不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com