精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线的参数方程为为参数,),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程与曲线的直角坐标方程;

(2)若直线与曲线交于两点,求的最小值.

【答案】(1);(2)

【解析】分析:(1)将参数方程利用代入法消去参数可得直线的普通方程利用 即可得曲线的直角坐标方程;(2)先证明直线过定点,点在圆的内部.当直线与线段垂直时,取得最小值利用勾股定理可得结果..

详解(1)将为参数,)消去参数

得直线,,即.

代入,得

即曲线的直角坐标方程为.

(2)设直线的普通方程为,其中,又

,则直线过定点

∵圆的圆心,半径

故点在圆的内部.

当直线与线段垂直时,取得最小值,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某地每单位面积菜地年平均使用氮肥量x(单位:kg)与每单位面积蔬菜年平均产量Y(单位:t)之间的关系有如下数据:

年份

2000

2001

2002

2003

2004

2005

2006

2007

x/kg

70

74

80

78

85

92

90

95

Y/t

5.1

6.0

6.8

7.8

9.0

10.2

10.0

12.0

年份

2008

2009

2010

2011

2012

2013

2014

x/kg

92

108

115

123

130

138

145

Y/t

11.5

11.0

11.8

12.2

12.5

12.8

13.0

(1)xY之间的相关系数,并检验是否线性相关;

(2)若线性相关,求每单位面积蔬菜年平均产量Y与每单位面积菜地年平均使用氮肥量x之间的回归直线方程,并估计每单位面积菜地年平均使用氮肥150 kg,每单位面积蔬菜的年平均产量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数(常数为自然对数的底数).

(Ⅰ)求函数的单调区间;

(Ⅱ)若恒成立,求实数的最大整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】
(1)(坐标系与参数方程选做题)曲线C的直角坐标方程为x2+y2﹣2x=0,以原点为极点,x轴的正半轴为极轴建立积坐标系,则曲线C的极坐标方程为
(2)(不等式选做题)在实数范围内,不等式|2x﹣1|+|2x+1|≤6的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱ABC﹣A1B1C1中,已知AB=AC=AA1= ,BC=4,点A1在底面ABC的投影是线段BC的中点O.

(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;
(2)求平面A1B1C与平面BB1C1C夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场销售价与上市时间的关系用图(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图(2)的抛物线段表示.

(1)写出图(1)表示的市场售价与时间的函数关系式写出图(2)表示的种植成本与时间的函数关系式

(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/kg,时间单位:天.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知
(1)求证:tanB=3tanA;
(2)若cosC= ,求A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为正数的两个数列{an}和{bn}满足:an+1= ,n∈N*
(1)设bn+1=1+ ,n∈N*,求证:数列{ }是等差数列;
(2)设bn+1= ,n∈N*,且{an}是等比数列,求a1和b1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}前三项的和为﹣3,前三项的积为8.
(1)求等差数列{an}的通项公式;
(2)若a2 , a3 , a1成等比数列,求数列{|an|}的前n项和.

查看答案和解析>>

同步练习册答案