15£®ÉèÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬Èô´æÔÚʵÊý¦Ë¡Ê£¨1£¬+¡Þ£©£¬Ê¹µÃ$\frac{1}{¦Ë}$an¡Üan+1¡Ü¦ËanÓë$\frac{1}{¦Ë}$Sn¡ÜSn+1¡Ü¦ËSn¶ÔÈÎÒân¡ÊN*¶¼³ÉÁ¢£®Ôò³Æ{an}ÊÇ¡°¿É¿Ø¡±ÊýÁУ®
£¨1£©ÒÑÖªÊýÁÐ{an}µÄͨÏʽΪan=r£¨rÊDz»Îª0µÄ³£Êý£©£¬ÊÔÅжÏ{an}ÊÇ·ñÊÇ¡°¿É¿Ø¡±ÊýÁУ¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©ÒÑÖªµÈ±ÈÊýÁÐ{an}µÄ¹«±Èq¡Ù1£¬Èôµ±¦Ë=4ʱ£¬Èô{an}ÊÇ¡°¿É¿Ø¡±ÊýÁУ¬Ç󹫱ÈqµÄÈ¡Öµ·¶Î§£»
£¨3£©ÒÑÖªµÈ²îÊýÁÐ{an}µÄ¹«²îd¡Ù0£¬Èô{an}ÊÇ¡°¿É¿Ø¡±ÊýÁУ¬Çó¦ËµÄÈ¡Öµ·¶Î§£®

·ÖÎö £¨1£©µ±r£¼0ʱ£¬{an}²»ÊÇ¡°¿É¿Ø¡±ÊýÁУ®µ±r£¾0ʱ£¬$\frac{1}{¦Ë}$n¡Ü£¨n+1£©³ÉÁ¢£¬´Ó¶øµÃµ½µ±r£¾0ʱ£¬{an}ÊÇ¡°¿É¿Ø¡±ÊýÁУ®
£¨2£©ÈôµÈ±ÈÊýÁÐ{an}ÊÇ¡°¿É¿Ø¡±ÊýÁУ¬Ôòa1£¾0£¬q£¾0£¬ÓÉ´ËÀûÓ÷ÖÀàÌÖÂÛ˼ÏëÄÜÍƵ¼³ö¹«±ÈqµÄÈ¡Öµ·¶Î§£®
£¨3£©ÈôµÈ²îÊýÁÐ{an}ÊÇ¡°¿É¿Ø¡±ÊýÁУ¬ÄÜÍƵ¼³ö$\frac{1}{¦Ë}¡Ü1+\frac{d}{{a}_{n}}¡Ü¦Ë$£¬ÇÒ$\frac{1}{¦Ë}¡Ü1+\frac{{a}_{n+1}}{{S}_{n}}¡Ü¦Ë$£¬ÓÉ´ËÄÜÇó³ö¦ËµÄÈ¡Öµ·¶Î§£®

½â´ð ½â£º£¨1£©µ±r£¼0ʱ£¬$\frac{1}{¦Ë}$an¡Ýan+1¡Ý¦Ëan£¬¹Ê{an}²»ÊÇ¡°¿É¿Ø¡±ÊýÁУ®
µ±r£¾0ʱ£¬$\frac{1}{¦Ë}$r¡Ýr¡Ý¦Ër¶Ô¦Ë¡Ê£¨1£¬+¡Þ£©ºã³ÉÁ¢£¬Sn=nr£¬
¹Ê$\frac{1}{¦Ë}$Sn¡ÜSn+1¡Ü¦ËSn¿É»¯Îª$\frac{1}{¦Ë}$nr¡Ü£¨n+1£©r¡Ü¦Ënr£¬
¼´$\frac{1}{¦Ë}$n¡Ü£¨n+1£©¡Ü¦Ën£¬
$\frac{1}{¦Ë}$n¡Ü£¨n+1£©³ÉÁ¢£¬
ÓÉ£¨n+1£©¡Ü¦ËnµÃ£¬¦Ë¡Ý$\frac{n+1}{n}$ºã³ÉÁ¢£¬
¹Ê¦Ë¡Ý2£»
¹Ê¿ÉÒÔÈ¡¦Ë=2£¬´Ó¶øʹ$\frac{1}{2}$an¡Üan+1¡Ü2anÓë$\frac{1}{2}$Sn¡ÜSn+1¡Ü2Sn¶ÔÈÎÒân¡ÊN*¶¼³ÉÁ¢£¬
¹Êµ±r£¾0ʱ£¬{an}ÊÇ¡°¿É¿Ø¡±ÊýÁУ®
£¨2£©½áºÏ£¨1£©¿ÉÖª£¬ÈôµÈ±ÈÊýÁÐ{an}ÊÇ¡°¿É¿Ø¡±ÊýÁУ¬
Ôòa1£¾0£¬q£¾0£¬an=a1•qn-1£¬Sn=$\frac{{a}_{1}£¨1-{q}^{n}£©}{1-q}$£»
¡ß$\frac{1}{4}$an¡Üan+1¡Ü4an£¬$\frac{1}{4}$Sn¡ÜSn+1¡Ü4Sn£¬
¡à$\frac{1}{4}$an¡Üan•q¡Ü4an£¬$\frac{1}{4}$$\frac{{a}_{1}£¨1-{q}^{n}£©}{1-q}$¡Ü$\frac{{a}_{1}£¨1-{q}^{n+1}£©}{1-q}$¡Ü4$\frac{{a}_{1}£¨1-{q}^{n}£©}{1-q}$£¬
¡à$\frac{1}{4}$¡Üq¡Ü4£¬$\frac{1}{4}$$\frac{{a}_{1}£¨1-{q}^{n}£©}{1-q}$¡Ü$\frac{{a}_{1}£¨1-{q}^{n+1}£©}{1-q}$¡Ü4$\frac{{a}_{1}£¨1-{q}^{n}£©}{1-q}$£¬
¢Ùµ±$\frac{1}{4}$¡Üq£¼1ʱ£¬
$\frac{1}{4}$$\frac{{a}_{1}£¨1-{q}^{n}£©}{1-q}$¡Ü$\frac{{a}_{1}£¨1-{q}^{n+1}£©}{1-q}$¡Ü4$\frac{{a}_{1}£¨1-{q}^{n}£©}{1-q}$¿É»¯Îª
$\frac{1}{4}$£¨1-qn£©¡Ü£¨1-qnq£©¡Ü4£¨1-qn£©£¬
$\frac{1}{4}$£¨1-qn£©¡Ü£¨1-qnq£©ÏÔÈ»³ÉÁ¢£¬
ÓÉ£¨1-qnq£©¡Ü4£¨1-qn£©»¯¼ò¿ÉµÃ£¬
qn£¨q-4£©+3¡Ý0£¬
ÓÉÒÑÖªµÃf£¨x£©=£¨q-4£©qx+3ÔÚ£¨0£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬
¹ÊÖ»Ðèʹq£¨q-4£©+3¡Ý0£¬
½âµÃ£¬q¡Ü1»òq¡Ý3£»
¹Ê$\frac{1}{4}$¡Üq£¼1£»
¢Úµ±1£¼q¡Ü4ʱ£¬
$\frac{1}{4}$$\frac{{a}_{1}£¨1-{q}^{n}£©}{1-q}$¡Ü$\frac{{a}_{1}£¨1-{q}^{n+1}£©}{1-q}$¡Ü4$\frac{{a}_{1}£¨1-{q}^{n}£©}{1-q}$¿É»¯Îª
$\frac{1}{4}$£¨qn-1£©¡Ü£¨qnq-1£©¡Ü4£¨qn-1£©£¬
$\frac{1}{4}$£¨qn-1£©¡Ü£¨qnq-1£©ÏÔÈ»³ÉÁ¢£¬
ÓÉ£¨qnq-1£©¡Ü4£¨qn-1£©»¯¼ò¿ÉµÃ£¬
qn£¨q-4£©+3¡Ü0£¬
ÏÔÈ»µ±q=4ʱ£¬ÉÏʽ²»³ÉÁ¢£»
µ±1£¼q£¼4ʱ£¬
ÓÉÒÑÖªf£¨x£©=£¨q-4£©qx+3ÔÚ£¨0£¬+¡Þ£©ÉÏÊǼõº¯Êý£¬
¹ÊÖ»Ðèʹq£¨q-4£©+3¡Ü0£¬
½âµÃ£¬1¡Üq¡Ü3£»
¹Ê1£¼q¡Ü3£»
¹Ê¹«±ÈqµÄÈ¡Öµ·¶Î§Îª[$\frac{1}{4}$£¬1£©¡È£¨1£¬3]£»
£¨3£©ÓÉ£¨1£©Öª£¬ÈôµÈ²îÊýÁÐ{an}ÊÇ¡°¿É¿Ø¡±ÊýÁУ¬
Ôòa1£¾0£¬d£¾0£¬an=a1+£¨n-1£©d£¬Sn=na1+$\frac{n£¨n-1£©}{2}$d£¬
ÓÉ$\frac{1}{¦Ë}$an¡Üan+1¡Ü¦Ëan»¯¼òµÃ£¬$\frac{1}{¦Ë}¡Ü1+\frac{d}{{a}_{n}}¡Ü¦Ë$£¬¢Ù
ÓÉ$\frac{1}{¦Ë}$Sn¡ÜSn+1¡Ü¦ËSn»¯¼ò¿ÉµÃ£¬
$\frac{1}{¦Ë}¡Ü1+\frac{{a}_{n+1}}{{S}_{n}}¡Ü¦Ë$£¬¢Ú
ÓÉ¢Ù¢Ú£¬µÃ¦Ë£¾1£¬
¡à¦ËµÄÈ¡Öµ·¶Î§ÊÇ£¨1£¬+¡Þ£©£®

µãÆÀ ±¾Ì⿼²é¡°¿É¿Ø¡±ÊýÁеÄÅжϣ¬¿¼²éµÈ±ÈÊýÁÐÊÇ¡°¿É¿Ø¡±Êýʱ¹«±ÈqµÄÈ¡Öµ·¶Î§µÄÇ󷨣¬¿¼²éµÈ²îÊýÁÐÊÇ¡°¿É¿Ø¡±ÊýÁÐʱʵÊý¦ËµÄÈ¡Öµ·¶Î§µÄÇ󷨣¬×ÛºÏÐÔÇ¿£¬ÄѶȴ󣬶ÔÊýѧ˼άµÄÒªÇó½Ï¸ß£¬½âÌâʱҪעÒâµÈ²îÊýÁС¢µÈ±ÈÊýÁеÄÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Ò»ÌõÖ±Ïß²»Óë×ø±êÖáƽÐлòÖغϣ¬ÔòËüµÄ·½³Ì£¨¡¡¡¡£©
A£®¿ÉÒÔд³ÉÁ½µãʽ»ò½Ø¾àʽB£®¿ÉÒÔд³ÉÁ½µãʽ»òб½Øʽ»òµãбʽ
C£®¿ÉÒÔд³Éµãбʽ»ò½Ø¾àʽD£®¿ÉÒÔд³ÉÁ½µãʽ»ò½Ø¾àʽ»òµãбʽ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®y=sinx£¬x¡Ê[0£¬2¦Ð]ÊÇÖÜÆÚº¯ÊýÂð£¿ÎªÊ²Ã´£¿½«Çø¼ä¸ÄΪ[0£¬+¡Þ£©ÄØ£¿µ±x¡Ê[0£¬+¡Þ£©Ê±£¬-2¦ÐÊÇËüµÄÒ»¸öÖÜÆÚÂð£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðÊÇa£¬b£¬c£¬Èôa2+b2-c2=$\sqrt{3}$ab£¬Ôò½ÇCµÈÓÚ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{6}$B£®$\frac{¦Ð}{4}$C£®$\frac{¦Ð}{3}$D£®$\frac{5¦Ð}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖª²»µÈʽ£¨x+2£©£¨x+1£©£¼0£¬µÄ½â¼¯Îª{x|a£¼x£¼b}£¬ÈôµãA£¨a£¬b£©ÔÚÖ±Ïßmx+ny+1=0ÉÏ£¨m£¬n¾ùΪÕýʵÊý£©£¬Ôò$\frac{1}{m}+\frac{1}{n}$µÄ×îСֵΪ3+2$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®¸ø³öÏÂÁÐËĸöÃüÌ⣺
¢Ù°ë¾¶Îª2£¬Ô²ÐĽǵĻ¡¶ÈÊýΪ$\frac{1}{2}$µÄÉÈÐÎÃæ»ýΪ$\frac{1}{2}$£®
¢ÚÈô¦Á£¬¦ÂΪÈñ½Ç£¬tan£¨¦Á+¦Â£©=$\frac{1}{2}$£¬tan¦Â=$\frac{1}{3}$£¬Ôò¦Á+2¦Â=$\frac{¦Ð}{4}$»ò$\frac{5¦Ð}{4}$£®
¢Ûº¯Êýy=cos£¨2x-$\frac{¦Ð}{3}$£©µÄÒ»Ìõ¶Ô³ÆÖáÊÇx=$\frac{2¦Ð}{3}$
¢ÜÒÑÖª¦Á¡Ê£¨0£¬¦Ð£©£¬sin¦Á+cos¦Á=-$\frac{\sqrt{2}}{5}$£¬Ôòtan£¨¦Á+$\frac{¦Ð}{4}$£©=$\frac{\sqrt{6}}{12}$
ÆäÖÐÕýÈ·µÄÃüÌâÊǢۢܣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Ñ§Ð£²ÍÌüÿÌ칩Ӧ500ÃûѧÉúÓòͣ¬Ã¿ÐÇÆÚÒ»ÓÐA¡¢BÁ½Öֲ˿ɹ©Ñ¡Ôñ£®µ÷²é±íÃ÷£¬·²ÊÇÔÚÕâÐÇÆÚһѡA²ËµÄ£¬ÏÂÐÇÆÚÒ»»áÓÐ20%¸ÄÑ¡B²Ë£»¶øÑ¡B²ËµÄ£¬ÏÂÐÇÆÚÒ»»áÓÐ30%¸ÄÑ¡A²Ë£¬ÓÃan±íʾµÚn¸öÐÇÆÚһѡAµÄÈËÊý£¬Èç¹ûa1=428£¬Ôòa4µÄֵΪ316£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{lgx£¬x£¾0}\\{x+12£¬x¡Ü0}\end{array}\right.$£¬Ôòf£¨10£©µÄÖµÊÇ£¨¡¡¡¡£©
A£®-2B£®1C£®0D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªº¯Êýf£¨x£©=ax-1£¨a£¾0ÇÒa¡Ù1£©
£¨1£©Èôº¯Êýy=f£¨x£©µÄͼÏó¾­¹ýP£¨3£¬9£©µã£¬ÇóaµÄÖµ£»
£¨2£©±È½Ï$f£¨lg\frac{1}{100}£©Óëf£¨-1.9£©$µÄ´óС£¬²¢Ð´³ö±È½Ï¹ý³Ì£»
£¨3£©Èôf£¨lna£©=e2£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸