精英家教网 > 高中数学 > 题目详情

(本小题满分10分)
定义在上的函数满足,且当时,
(1)求上的表达式;
(2)若,且,求实数的取值范围。

(1)(2)

解析试题分析:(1)由可知周期,当
综上…………………………5分
(2)
 ,当
的值域是…………………………8分
…………………………………10分
考点:求函数解析式及参数范围
点评:本题中第一小题利用将x的范围转化到区间上进行求解

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知二次函数y=f1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f2(x)的图象与直线y=x的两个交点间距离为8,f(x)= f1(x)+ f2(x).
(Ⅰ) 求函数f(x)的表达式;
(Ⅱ) 证明:当a>3时,关于x的方程f(x)= f(a)有三个实数解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)某企业投入81万元经销某产品,经销时间共60个月,市场调研表明,该企业在经销这个产品期间第个月的利润(单位:万元),为了获得更多的利润,企业将每月获得的利润投入到次月的经营中,记第个月的当月利润率,例如:
(Ⅰ); (Ⅱ)求第个月的当月利润率
(Ⅲ)该企业经销此产品期间,哪个月的当月利润率最大,并求该月的当月利润率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知
1)若,求方程的解;
2)若对上有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知函数的图象经过点(2,),其中
(1)求的值;
(2)若函数 ,解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数,在同一周期内,
时,取得最大值;当时,取得最小值.
(Ⅰ)求函数的解析式;
(Ⅱ)求函数的单调递减区间;
(Ⅲ)若时,函数有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)设函数的定义域为,记函数的最大值为.
(1)求的解析式;(2)已知试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数为常数)。
(Ⅰ)函数的图象在点()处的切线与函数的图象相切,求实数的值;
(Ⅱ)设,若函数在定义域上存在单调减区间,求实数的取值范围;
(Ⅲ)若,对于区间[1,2]内的任意两个不相等的实数,都有
成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

商店出售茶壶和茶杯,茶壶单价为每个20元,茶杯单价为每个5元,该店推出两种促销优惠办法:
(1)买1个茶壶赠送1个茶杯;
(2)按总价打9.2折付款。
某顾客需要购买茶壶4个,茶杯若干个,(不少于4个),若设购买茶杯数为x个,付款数为y(元),试分别建立两种优惠办法中y与x之间的函数关系式,并讨论该顾客买同样多的茶杯时,两种办法哪一种更省钱?

查看答案和解析>>

同步练习册答案