精英家教网 > 高中数学 > 题目详情
10.在三角形ABC中若B=30°,AB=2$\sqrt{3}$,AC=2.则满足条件的三角形的个数有(  )
A.0B.1C.2D.3

分析 由已知利用正弦定理可得sinC=$\frac{\sqrt{3}}{2}$,结合大边对大角及C的范围可求C有两解,从而得解满足条件的三角形的个数有2个.

解答 解:∵B=30°,AB=2$\sqrt{3}$,AC=2.
∴由正弦定理可得:sinC=$\frac{ABsinB}{AC}$=$\frac{2\sqrt{3}×\frac{1}{2}}{2}$=$\frac{\sqrt{3}}{2}$,
∵C∈(0°,180°),AB>AC,
∴C∈(30°,180°),可得:C=60°或120°,
故满足条件的三角形的个数有2个.
故选:C.

点评 本题主要考查了正弦定理,大边对大角在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数y=f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x+x2,若存在正数a,b,使得当x∈[a,b]时,f(x)的值域为$[{\frac{1}{b},\frac{1}{a}}]$,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一个几何体的三视图如图所示,则这个几何体的体积为(  )
A.$\frac{82}{3}$B.26C.80D.$\frac{80}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,a,b,c分别是角A,B,C的对边,b=4且$\frac{cosB}{cosC}=\frac{4}{2a-c}$.
(1)求角B的大小;
(2)求△ABC的面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,在正四棱柱(底面是正方形的直棱柱)ABCD-A1B1C1D1中,E是BC的中点,F是C1D的中点,P是棱CC1所在直线上的动点.则下列三个命题:
(1)CD⊥PE           
(2)EF∥平面ABC1
(3)V${\;}_{P-{A}_{1}D{D}_{1}}$=V${\;}_{{D}_{1}-ADE}$
其中正确命题的个数有①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知△ABC的三边所在直线方程分别为AB:4x-3y+10=0,BC:y-2=0,CA:3x-4y-5=0.
(1)求∠A的正切值的大小;
(2)求△ABC的重心坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知p:x≤-1,q:a≤x<a+2,若q是p的充分不必要条件,则实数a的取值范围为(  )
A.(-∞,1]B.[3,+∞)C.(-∞,-3]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在平面平直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{3}}{2}$,在顶点为A(-2,0),过点A作斜率为k(k≠0)的直线l交椭圆C于点D,交y轴于点E.
(1)求椭圆C的方程;
(2)已知点P为AD的中点,是否存在定点Q,对于任意的k(k≠0)都有OP⊥EQ?若存在,求出点Q的坐标,若不存在,说明理由;
(3)若过点O作直线l的平行线交椭圆C于点M,求$\frac{|AD|+|AE|}{|OM|}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知两点A(0,1),B(4,3),则线段AB的垂直平分线方程是(  )
A.x-2y+2=0B.2x+y-6=0C.x+2y-2=0D.2x-y+6=0

查看答案和解析>>

同步练习册答案