A. | 0 | B. | 1 | C. | 2 | D. | 3 |
分析 由已知利用正弦定理可得sinC=$\frac{\sqrt{3}}{2}$,结合大边对大角及C的范围可求C有两解,从而得解满足条件的三角形的个数有2个.
解答 解:∵B=30°,AB=2$\sqrt{3}$,AC=2.
∴由正弦定理可得:sinC=$\frac{ABsinB}{AC}$=$\frac{2\sqrt{3}×\frac{1}{2}}{2}$=$\frac{\sqrt{3}}{2}$,
∵C∈(0°,180°),AB>AC,
∴C∈(30°,180°),可得:C=60°或120°,
故满足条件的三角形的个数有2个.
故选:C.
点评 本题主要考查了正弦定理,大边对大角在解三角形中的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,1] | B. | [3,+∞) | C. | (-∞,-3] | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x-2y+2=0 | B. | 2x+y-6=0 | C. | x+2y-2=0 | D. | 2x-y+6=0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com