精英家教网 > 高中数学 > 题目详情
若点P到点的距离与它到直线y+3=0的距离相等,则P的轨迹方程为 (  )
A.B.C.D.
C

试题分析:根据抛物线的定义可知,条件为以为焦点的抛物线,所以轨迹为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的左焦点为,右焦点为,过的直线交椭圆于两点, 的周长为8,且面积最大时,为正三角形.

(1)求椭圆的方程;
(2)设动直线与椭圆有且只有一个公共点,且与直线相交于点,证明:点在以为直径的圆上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,左右焦点分别为,且.
(1)求椭圆C的方程;
(2)过点的直线与椭圆相交于两点,且,求的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆与椭圆中心在原点,焦点均在轴上,且离心率相同.椭圆的长轴长为,且椭圆的左准线被椭圆截得的线段长为,已知点是椭圆上的一个动点.

⑴求椭圆与椭圆的方程;
⑵设点为椭圆的左顶点,点为椭圆的下顶点,若直线刚好平分,求点的坐标;
⑶若点在椭圆上,点满足,则直线与直线的斜率之积是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点分别为,离心率为,P是椭圆上一点,且面积的最大值等于2.
(1)求椭圆的方程;
(2)直线y=2上是否存在点Q,使得从该点向椭圆所引的两条切线相互垂直?若存在,求点Q的坐标;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的焦点为,过点的直线交抛物线于点.
(Ⅰ)若(点在第一象限),求直线的方程;
(Ⅱ)求证:为定值(点为坐标原点).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的两个焦点是F1(c,0),F2(c,0)(c>0)。
(I)若直线与椭圆C有公共点,求的取值范围;
(II)设E是(I)中直线与椭圆的一个公共点,求|EF1|+|EF2|取得最小值时,椭圆的方程;
(III)已知斜率为k(k≠0)的直线l与(II)中椭圆交于不同的两点A,B,点Q满足   ,其中N为椭圆的下顶点,求直线l在y轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点是双曲线右支上一点,是双曲线的左焦点,且双曲线的一条渐近线恰是线段的中垂线,则该双曲线的离心率是(      )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线上一点P到y轴的距离为5,则点P到焦点的距离为(    )
A.5B.6C.7D.8

查看答案和解析>>

同步练习册答案