精英家教网 > 高中数学 > 题目详情
16.某零售店近五个月的销售额和利润额资料如下表:
商店名称ABCDE
销售额x/千万35679
利润额y/百万元23345
(1)求利润额y关于销售额x的线性回归方程.
(2)当销售额为4(千万元)时,利用(2)的结论估计该零售店的利润额(百万元).
(附:在线性回归方程$\widehat{y}$=$\widehat{b}$x$+\widehat{a}$中,$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-n\stackrel{-2}{x}}$,$\widehat{a}$=$\overline{y}$$-\widehat{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本平均值.)

分析 (1)根据所给的这组数据,写出利用最小二乘法要用的量的结果,把所求的这些结果代入公式求出线性回归方程的系数,进而求出a的值,写出线性回归方程.
(2)根据上一问做出的线性回归方程,把x=4的值代入方程,估计出对应的y的值.

解答 解:(1)由题中的数据可知$\overline{x}$=6,$\overline{y}$=3.4.
所以b=$\frac{-3×(-1.4)+(-1)×(-0.4)+1×0.6+3×1.6}{9+1+1+9}$=$\frac{1}{2}$.
a=3.4-$\frac{1}{2}×6$=0.4.
所以利润额y关于销售额x的回归直线方程为y=0.5x+0.4.
(2)由(1)知,当x=4时,y=0.5×4+0.4=2.4,
所以当销售额为4(千万元)时,可以估计该店的利润额为2.4(百万元).

点评 本题考查线性回归方程的求法和应用,是一个基础题,这种题目解题的关键是求出最小二乘法所要用到的量,数字的运算不要出错.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若0<x<π,则函数y=lg(sinx-$\frac{1}{2}$)+$\sqrt{\frac{1}{2}-cosx}$的定义域是(  )
A.[$\frac{π}{3}$,$\frac{2}{3}π$)B.($\frac{π}{6}$,$\frac{5}{6}π$)C.[$\frac{π}{3}$,$\frac{5}{6}π$)D.($\frac{5}{6}π$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图1,△ABC是等腰直角三角形∠CAB=90°,AC=2a,E,F分别为AC,BC的中点,沿EF将△CEF折起,得到如图2所示的四棱锥C′-ABFE
(Ⅰ)求证:AB⊥平面AEC′;
(Ⅱ)当四棱锥C′-ABFE体积取最大值时,
(i)若G为BC′中点,求异面直线GF与AC′所成角;
(ii)在C′-ABFE中AE交BF于C,求二面角A-CC′-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知各项均为正数的两个数列{an}和{bn}满足:an+1=$\frac{{a}_{n}+{b}_{n}}{\sqrt{{a}_{n}^{2}+{b}_{n}^{2}}}$,bn+1=1+$\frac{{b}_{n}}{{a}_{n}}$,n∈N*
(1)求证:数列{($\frac{{b}_{n}}{{a}_{n}}$)2}是等差数列;
(2)若a1=b1=1令($\frac{{b}_{n}}{{a}_{n}}$)2=$\frac{1}{{c}_{n}}$,若Sn=C1C2+C2C3+…+CnCn+1,求Sn
(3)在(2)的条件下,设dn=$\frac{3-{S}_{n-1}}{1-\sqrt{11}(1-{S}_{n-1})}$,若dn≤2m-1,对于任意的n∈N+恒成立,求正整数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.用秦九韶算法计算多项式f(x)=x5+3x4-x3+2x-1当x=2时的值时,v3=(  )
A.9B.18C.20D.39

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知m,n是两条不同的直线,α,β是两个不同的平面,若m⊥α,n⊥β,且β⊥α,则下列结论一定正确的是(  )
A.m⊥nB.m∥nC.m与n相交D.m与n异面

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}是等比数列,则“a1<a2”是“数列{an}为递增数列”的(  )
A.充分不必要条件B.充分必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由此可归纳出:若函数f(x)是定义在R上的偶函数,则f′(x)(  )
A.为偶函数B.为奇函数
C.既为奇函数又为偶函数D.为非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在直角坐标系中,已知曲线C:$\left\{\begin{array}{l}{x=1+cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),若以原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C的极坐标方程为ρ=2cosθ.

查看答案和解析>>

同步练习册答案