精英家教网 > 高中数学 > 题目详情
15.在平面直角坐标系xoy中,以C(1,-2)为圆心的圆与直线x+y+3$\sqrt{2}$+1=0相切.
(1)求圆C的方程;
(2)是否存在斜率为1的直线L,使得圆C上存在两点M,N关于L对称,若存在,求出此直线方程,若不存在,请说明理由.
(3)求圆C的过原点弦长最短的弦所在直线的方程.

分析 (1)设出圆的标准方程,求出圆的半径r,写出该圆的方程;
(2)假设存在满足题意的直线,方程为y=x+m,则直线必过圆心,把圆心坐标代入直线方程求得m,则直线方程可求;
(3)求出经过原点和圆心的直线的斜率,得到过原点且与该直线垂直的直线的斜率,则圆C的过原点弦长最短的弦所在直线的方程可求.

解答 解:(1)设圆的方程为(x-a)2+(y-b)2=r2
依题意得,a=1,b=-2;
∴该圆的半径为r=$\frac{|1-2+3\sqrt{2}+1|}{\sqrt{2}}=3$,
∴该圆的方程是(x-1)2+(y+2)2=9;
(2)设存在满足题意的直线,且此直线方程为y=x+m,则直线必过圆心,
∴-2=1+m,即m=-3.
∴直线方程为y=x-3;
(3)经过原点和圆心的直线的斜率为k=$\frac{-2-0}{1-0}=-2$,
∴过原点且与该直线垂直的直线的斜率为$\frac{1}{2}$,直线方程为y=$\frac{1}{2}x$.

点评 本题考查了直线与圆的方程的应用问题,考查直线与圆相切、圆的基本性质等问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.$\lim_{n→∞}\frac{{n•{3^n}}}{{n{{(x-2)}^n}+n•{3^{n+1}}-{3^n}}}=\frac{1}{3}$则实数x的取值范围是(  )
A.[-1,5]B.(-1,5)C.[-1,5]D.(-5,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=1-xlnx的零点所在区间是(  )
A.(0,$\frac{1}{3}$)B.($\frac{1}{3}$,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.240°的弧度数是(  )
A.$\frac{5π}{6}$B.$\frac{7π}{6}$C.$\frac{4π}{3}$D.$\frac{5π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设集合S={x|x>-2},T={x|x2+3x-4≤0},则(∁RS)∪T={x|x≤1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在单调递减的等比数列{an}中,若a3=1,${a_2}+{a_4}=\frac{5}{2}$,则a1等于4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=|x-1|+|x+4|的值域为[5,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若x,y满足不等式组$\left\{{\begin{array}{l}{2x+y-4≥0}\\{x+y-3≤0}\\{y≥0}\end{array}}\right.$,则3x+2y的最大值是(  )
A.6B.7C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数的图象如图所示,根据此图象你能写出这个函数的解析式吗?

查看答案和解析>>

同步练习册答案