精英家教网 > 高中数学 > 题目详情
如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2.
(Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小.
(Ⅰ)连结BD,由ABCD是菱形且∠BCD=60°知,
△BCD是等边三角形.因为E是CD的中点,所以BE⊥CD,又AB∥CD,
所以BE⊥AB.又因为PA⊥平面ABCD,平面ABCD,所以
PA⊥BE,因此BE⊥平面PAB.又平面PBE,所以平面PBE⊥平面PAB.

解: (Ⅱ)延长AD、BE相交于点F,连结PF.
过点A作AH⊥PB于H,由(Ⅰ)知平面PBE⊥平面PAB,所以AH⊥平面PBE.
在Rt△ABF中,因为∠BAF=60°,
所以,AF=2AB=2=AP.在等腰Rt△PAF中,取PF的中点G,连接AG.
则AG⊥PF.连结HG,由三垂线定理的逆定理得,
PF⊥HG.所以∠AGH是平面PAD和平面PBE所成二面角的平面角(锐角).
在等腰Rt△PAF中,
在Rt△PAB中,
所以,在Rt△AHG中,
故平面PAD和平面PBE所成二面角(锐角)的大小是
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,BCF=CEF=,AD=,EF=2.
(Ⅰ)求证:AE//平面DCF;
(Ⅱ)当AB的长为何值时,二面角A-EF-C的大小为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥中,//平面.
(Ⅰ)设平面平面,求证://
(Ⅱ)求证:平面
(Ⅲ)设点为线段上一点,且直线与平面所成角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分如图,四边形为矩形,且上的动点。

(1) 当的中点时,求证:
(2) 设,在线段上存在这样的点E,使得二面角的平面角大小为。试确定点E的位置。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在矩形ABCD中AB="1," BC=, 点P为矩形ABCD所
在平面外一点,PA⊥平面ABCD,点E为PA的中点。

(Ⅰ)求证:PC//平面BED;
(Ⅱ)求直线BD与平面PAB所成的角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,CE∥AB。
(Ⅰ)求证:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,且CD与平面PAD所成的角为45°,求二面角B—PE—A的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知如图(1),梯形中,分别是上的动点,且,设)。沿将梯形翻折,使平面平面,如图(2)。
(Ⅰ)求证:平面平面
(Ⅱ)若以为顶点的三棱锥的体积记为,求的最大值;
(Ⅲ)当取得最大值时,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图甲,在直角梯形中,的中点. 现沿把平面折起,使得(如图乙所示),分别为边的中点.
(Ⅰ)求证:平面
(Ⅱ)求证:平面平面
(Ⅲ)在上找一点,使得平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图三棱柱中,底面侧面为等边三角形,且AB=BC,三棱锥的体积为

(I)求证:
(II)求直线与平面BAA1所成角的正弦值.

查看答案和解析>>

同步练习册答案