精英家教网 > 高中数学 > 题目详情

【题目】《孙子算经》是我国古代的数学著作,其卷下中有类似如下的问题:“今有方物一束,外周一匝有四十枚,问积几何?”如右图是解决该问 题的程序框图,若设每层外周枚数为a,则输出的结果为(

A.81
B.74
C.121
D.169

【答案】C
【解析】解:模拟程序的运行,可得 a=1,S=0,n=1
满足条件a≤40,执行循环体,S=1,n=2,a=8
满足条件a≤40,执行循环体,S=9,n=3,a=16
满足条件a≤40,执行循环体,S=25,n=4,a=24
满足条件a≤40,执行循环体,S=49,n=5,a=32
满足条件a≤40,执行循环体,S=81,n=6,a=40
满足条件a≤40,执行循环体,S=121,n=7,a=48
不满足条件a≤40,退出循环,输出S的值为121.
故选:C.
【考点精析】通过灵活运用程序框图,掌握程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点M(﹣3,0),点P在y轴上,点Q在x轴的正半轴上,点N在直线PQ上,且满足 . (Ⅰ)当点P在y轴上移动时,求点N的轨迹C的方程;
(Ⅱ)过点 做直线l与轨迹C交于A,B两点,若在x轴上存在一点E(x0 , 0),使得△AEB是以点E为直角顶点的直角三角形,求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4cosθ﹣2sinθ.
(1)求C的参数方程;
(2)若点A在圆C上,点B(3,0),求AB中点P到原点O的距离平方的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是求样本x1、x2、…x10平均数 的程序框图,图中空白框中应填入的内容为(
A.S=S+xn
B.S=S+
C.S=S+n
D.S=S+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆E: + =1(a>0)的焦点在x轴上.
(Ⅰ)若椭圆E的离心率e= a,求椭圆E的方程;
(Ⅱ)设F1、F2分别是椭圆E的左、右焦点,P为直线x+y=2 与椭圆E的一个公共点,直线F2P交y轴于点Q,连结F1P,问当a变化时, 的夹角是否为定值,若是定值,求出该定值,若不是定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 满足 ,且a1=3. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南宋时期的数学家秦九韶在他的著作《数书九章》中提出了计算多项式f(x)=anxn+an1xn1+…+a1x+a0的值的秦九韶算法,即将f(x)改写成如下形式:f(x)=(…((anx+an1)x+an2)x+…+a1)x+a0 , 首先计算最内层一次多项式的值,然后由内向外逐层计算一次多项式的值,这种算法至今仍是比较先进的算法,将秦九韶算法用程序框图表示如图,则在空白的执行框内应填入(
A.v=vx+ai
B.v=v(x+ai
C.v=aix+v
D.v=ai(x+v)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的多面体中,ABCD是平行四边形,BDEF是矩形,ED⊥面ABCD,∠ABD= ,AB=2AD.
(Ⅰ)求证:平面BDEF⊥平面ADE;
(Ⅱ)若ED=BD,求AF与平面AEC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设已知抛物线C:y2=2px的焦点为F1 , 过F1的直线l与曲线C相交于M,N两点.
(1)若直线l的倾斜角为60°,且|MN|= ,求p;
(2)若p=2,椭圆 +y2=1上两个点P,Q,满足:P,Q,F1三点共线且PQ⊥MN,求四边形PMQN的面积的最小值.

查看答案和解析>>

同步练习册答案