精英家教网 > 高中数学 > 题目详情
15.如图所示,点P在边长为1的正方形的边上运动,设M是CD边的中点,则当P沿着A-B-C-M运动时,以点P经过的路程x为自变量,三角形APM的面积为y的函数,则y=f(x)的图象形状大致是下列图中的(  )
A.B.C.D.

分析 当点在AB上移动时、当点在BC上移动时、当点在CD上时,讨论y随x的变化关

解答 解:根据题意和图形可知:点P按A⇒B⇒C⇒M的顺序在边长为1的正方形边上运动,△APM的面积分为3段;
当点在AB上移动时,高不变底边逐渐变大,故面积逐渐变大;
当点在BC上移动时,y=S正方形-S△ADM-S△ABP-S△PCM
=1-$\frac{1}{4}$-$\frac{1}{2}$×1×(x-1)-$\frac{1}{2}$×$\frac{1}{2}$×(2-x)=-$\frac{1}{4}$x+$\frac{3}{4}$,此函数是关于x的递减函数;
当点在CD上时,高不变,底边变小故面积越来越小直到0为止.
故选:A.

点评 要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.在△ABC中,AB=AC=1,$BC=\sqrt{3}$,则向量$\overrightarrow{AC}$在$\overrightarrow{AB}$方向上的投影为(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.“x+y≠3”是“x≠1或y≠2”的充分不必要条件.(从“充要”,“充分不必要”,“必要不充分”,“既不充分也不必要”中选择适当的填写)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数$f(x)=\frac{1}{3}{x^3}+\frac{1-a}{2}{x^2}-ax-a,x∈R$,其中a>0,若函数f(x)在区间(-2,0)内恰有两个零点,则a的取值范围是(0,$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.f(x)=$\frac{\sqrt{lo{g}_{3}(x+2)}}{x-1}$的定义域为[-1,1)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点,现将△AFD沿AF折起,使平面ABD⊥平面ABCF.在平面ABD内过点D作DK⊥AB,K为垂足,设AK=t,则t的取值范围是(  )
A.($\frac{1}{2}$,2)B.($\frac{1}{2}$,1)C.($\frac{\sqrt{3}}{2}$,2)D.($\frac{\sqrt{3}}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.△ABC中,∠BAC=90°,AD⊥BC,垂足为D.若BC=m,∠B=α,则AD长为(  )
A.msin2αB.mcos2αC.msinαcosαD.msinαtanα

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数f(x)=x3-6ax+3a在(0,1)内有极小值,则实数a的取值范围是(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知定义在R上的奇函数f(x)满足:当x≥0时,f(x)=x-sinx,若不等式f(-4t)>f(2mt2+m)对任意实数t恒成立,则实数m的取值范围是(-∞,-$\sqrt{2}$).

查看答案和解析>>

同步练习册答案