精英家教网 > 高中数学 > 题目详情

【题目】已知是两条不重合的直线, 是两个不重合的平面,给出下列命题:

①若 ,则

②若 ,则

③若 ,则

④当,且时,若,则.

其中正确命题的个数是( )

A. 0 B. 1 C. 2 D. 3

【答案】A

【解析】

不正确因为可能成立不正确因为条件不能保证相交;不正确,因为 的位置关系不确定不正确,因为因为 的位置关系不确定所以正确命题的个数为故选A.

【方法点晴】本题主要考查线面平行的判定与性质、面面平行的性质与判定,属于中档题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着智能手机的发展,微信越来越成为人们交流的一种方式,某机构对使用微信交流的态度进行调查,随机调查了50人,他们年龄的频数分布及对使用微信交流赞成人数如表:

年龄(岁)

频数

5

10

15

10

5

5

赞成人数

5

10

12

7

2

1

(1)由以上统计数据填写下面列联表,并判断是否有99%的把握认为年龄45岁为分界点对使用微信交流的态度有差异;

年龄不低于45岁的人

年龄低于45岁的人

合计

赞成

不赞成

合计

(2)若对年龄分别在 的被调查人中各抽取一人进行追踪调查,求选中的2人中至少有一人赞成使用微信交流的概率.

参考公式: ,其中

参考数据:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为(其中为参数),曲线 ,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系.

(1)求曲线的普通方程和曲线的极坐标方程;

(2)若射线)与曲线 分别交于 两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知袋中放有形状大小相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球个,从袋中随机抽取一个小球,取到标号为2的小球的概率为,现从袋中不放回地随机取出2个小球,记第一次取出的小球标号为,第二次取出的小球标号为.

(1)记“”为事件,求事件发生的概率.

(2)在区间上任取两个实数,求事件恒成立”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求在区间)上的最小值

(2)当时,讨论方程实数根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数为常数,是自然对数的底数).

(1)当时,求函数的单调区间;

(2)若函数内存在两个极值点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“鸡兔同笼”问题是我国古代著名的趣题之一.《孙子算经》中就记载了这个有趣的问题.书中这样描述:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔几何?

试设计一个算法,输入鸡兔的总数量和鸡兔的脚的总数量,分别输出鸡、兔的数量,写出程序语句.并画出相应的程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,四边形中, ,将四边形沿着折叠,得到图2所示的三棱锥,其中

(1)证明:平面平面

(2)若中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相互统一的和谐美.定义:能够将圆的周长和面积同时等分成两部分的函数称为圆的一个“太极函数”.下列有关说法中:

①对圆的所有非常数函数的太极函数中,一定不能为偶函数;

②函数是圆的一个太极函数;

③存在圆,使得是圆的太极函数;

④直线所对应的函数一定是圆的太极函数.

所有正确说法的序号是__________

查看答案和解析>>

同步练习册答案