精英家教网 > 高中数学 > 题目详情

已知函数,其中ma均为实数.
(1)求的极值;
(2)设,若对任意的恒成立,求的最小值;
(3)设,若对任意给定的,在区间上总存在,使得成立,求的取值范围.

(1)极大值为1,无极小值;(2)3-;(3)

解析试题分析:(1)求的极值,就是先求出,解方程,此方程的解把函数的定义域分成若干个区间,我们再确定在每个区间里的符号,从而得出极大值或极小值;(2)此总是首先是对不等式恒成立的转化,由(1)可确定上是增函数,同样的方法(导数法)可确定函数上也是增函数,不妨设,这样题设绝对值不等式可变为
,整理为,由此函数在区间上为减函数,则在(3,4)上恒成立,要求的取值范围.采取分离参数法得恒成立,于是问题转化为求上的最大值;(3)由于的任意性,我们可先求出上的值域,题设“在区间上总存在,使得
成立”,转化为函数在区间上不是单调函数,极值点为),其次,极小值,最后还要证明在上,存在,使,由此可求出的范围.
试题解析:(1),令,得x=1.       1分
列表如下:

x
(-∞,1)
1
(1,+∞)

+
0
-
g(x)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).
(1)确定a的值;
(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求曲线处的切线方程;
(2)求的单调区间;
(3)设,若对任意,均存在,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)若方程有3个不同的根,求实数的取值范围;
(2)在(1)的条件下,是否存在实数,使得上恰有两个极值点,且满足,若存在,求实数的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若函数上单调递增,求实数的取值范围;
(2)求函数的极值点.
(3)设为函数的极小值点,的图象与轴交于两点,且中点为
求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线.
(1)求曲线在点()处的切线方程;
(2)若存在使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线.
(1)若曲线C在点处的切线为,求实数的值;
(2)对任意实数,曲线总在直线:的上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且是函数的一个极小值点.
(1)求实数的值;
(2)求在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在定义域内的函数,若对任意的都有,则称函数为“妈祖函数”,否则称“非妈祖函数”.试问函数,()是否为“妈祖函数”?如果是,请给出证明;如果不是,请说明理由.

查看答案和解析>>

同步练习册答案