精英家教网 > 高中数学 > 题目详情
14.已知实数x,y满足$\left\{\begin{array}{l}{x≥1}\\{y≥0}\\{x+y≤2}\end{array}\right.$,则z=x-2y的最大值是2.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.

解答 解:

化目标函数z=x-2y为$y=\frac{x}{2}-\frac{z}{2}$,
由图可知,当直线$y=\frac{x}{2}-\frac{z}{2}$过A(2,0)时,直线在y轴上的截距最小,z有最大值为2.
故答案为:2.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知△ABC中,D是△ABC外接圆劣弧$\widehat{AC}$上的点(不与点A,C重合),延长BD至E,且AD的延长线平分∠CDE.
(1)求证:AB=AC;
(2)若∠BAC=30°,△ABC中BC边上的高为4+2$\sqrt{3}$,求△ABC外接圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=xsinx,则$f'(\frac{π}{2})$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.宋元时期杰出的数学家朱世杰在其数学巨著《四元玉鉴》卷中“茭草形段”第一个问题“今有茭草六百八十束,欲令‘落一形’埵(同垛)之.问底子(每层三角形边茭草束数,等价于层数)几何?”中探讨了“垛枳术”中的落一形垛(“落一形”即是指顶上1束,下一层3束,再下一层6束,…,成三角锥的堆垛,故也称三角垛,如图,表示第二层开始的每层茭草束数),则本问题中三角垛底层茭草总束数为120.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,若a2-b2=c(b+c),则A=(  )
A.60°B.120°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在锐角△ABC中,角A、B、C的对边分别为a,b,c,且acosB,ccosC,bcosA成等差数列.
(1)求角C的值;
(2)求2sin2A+cos(A-B)的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.从某班5位老师中随机选两位老师值班,有女老师被选中的概率为$\frac{7}{10}$,则在这5位老师中,女老师有2人.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设等比数列{an}的公比为q,若Sn,Sn-1,Sn+1成等差数列,则$\frac{{a}_{5}+{a}_{7}}{{a}_{3}+{a}_{5}}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数中,导函数是奇函数的是(  )
A.y=sin2xB.y=exC.y=lnxD.y=(2x)2

查看答案和解析>>

同步练习册答案