精英家教网 > 高中数学 > 题目详情
将正方形ABCD沿对角线BD折成直二面角,有如下四个结论:
①AC⊥BD;②是等边三角形;③所成的角为;④与平面的角。
其中正确的结论的序号是
①②③

试题分析:根据已知中正方形ABCD沿对角线BD折成直二面角,我们以O点为坐标原点建立空间坐标系,求出ABCD各点坐标后,进而可以求出相关直线的方向向量及平面的法向量,然后代入线线夹角,线面夹角公式,及模长公式,分别计算即可得到答案.解:连接AC与BD交于O点,对折后如图所示,令OC=1
则O(0,0,0),A(1,0,0),B(0,1,0),C(0,0,1),D(0,-1,0)可知向量AC垂直与向量BD,故可知①正确,同时利用两点的距离公式得到AD=DC=CA,故该三角形是等边三角形,成立,对于所成的角为;根据向量的夹角公式得到成立,而与平面的角。故填写①②③
点评:本题以平面图形的翻折为载体,考查空间中直线与平面之间的位置关系,根据已知条件构造空间坐标系,将空间线线夹角,线面夹角转化为向量的夹角问题是解题的关键
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,矩形ABCD所在的平面,M,N分别为AB,PC的中点。求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,边长为2的正方形中,

(1)点的中点,点的中点,将分别沿折起,使两点重合于点。求证:
(2)当时,求三棱锥的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知棱柱的底面是菱形,且为棱的中点,为线段的中点,

(Ⅰ)求证:
(Ⅱ)判断直线与平面的位置关系,并证明你的结论;
(Ⅲ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面为正方形,侧面PAD是正三角形,且侧面PAD⊥底面ABCD,

(I) 求证:平面PAD⊥平面PCD
(II)求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体的棱线长为1,面对角线上有两个动点E,F,且,则下列四个结论中① ②平面 ③三棱锥的体积为定值 ④异面直线所成的角为定值,其中正确的个数是
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知AD=4, BD=,AB=2CD=8.

(1)设M是PC上的一点,证明:平面MBD⊥平面PAD;
(2)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以下对于几何体的描述,错误的是(   )
A.以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球
B.一个等腰三角形绕着底边上的高所在直线旋转180º形成的封闭曲面所围成的图形叫做圆锥
C.用平面去截圆锥,底面与截面之间的部分叫做圆台
D.以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图所示,在四棱锥中,平面
的中点.
(1)证明:平面
(2)若,求二面角的正切值.

查看答案和解析>>

同步练习册答案