精英家教网 > 高中数学 > 题目详情

【题目】已知焦点在轴上的抛物线过点,椭圆的两个焦点分别为,其中的焦点重合,过点的长轴垂直的直线交两点,且,曲线是以坐标原点为圆心,以为半径的圆.

(1)求的标准方程;

(2)若动直线相切,且与交于两点,求的面积的取值范围.

【答案】(1) 的标准方程为.的标准方程为.(2)

【解析】

(1)先由已知设抛物线的方程为,根据抛物线过点,即可求出抛物线方程,得出坐标,再由题意可得,进而可求出椭圆方程;又曲线是以坐标原点为圆心,以为半径的圆,根据坐标坐标得出的值,即可写出圆的标准方程;

(2)先由直线相切,得圆心到直线的距离为1,因此,根据题意分类讨论:当直线的斜率不存在和斜率存在两种情况,结合韦达定理和弦长公式,分别求出的范围即可.

解:(1)由已知设抛物线的方程为

,解得,即的标准方程为.

,不妨设椭圆的方程为

,得,所以

,所以

的标准方程为.

易知,所以的标准方程为.

(2)因为直线相切,所以圆心到直线的距离为1.所以.

当直线的斜率不存在时,其方程为,易知两种情况所得到的的面积相等.

,得.

不妨设,则

此时.

当直线的斜率存在时,设其方程为

,即.

,得

所以 恒成立.

.

所以.

,则

所以

,则

易知区间上单调递减,所以.

综上,的面积的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面.为线段的中点.

1)证明:

2)求与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年12月1日,贵阳市地铁一号线全线开通,在一定程度上缓解了出行的拥堵状况.为了了解市民对地铁一号线开通的关注情况,某调查机构在地铁开通后的某两天抽取了部分乘坐地铁的市民作为样本,分析其年龄和性别结构,并制作出如下等高条形图:

根据图中(岁以上含岁)的信息,下列结论中不一定正确的是( )

A. 样本中男性比女性更关注地铁一号线全线开通

B. 样本中多数女性是岁以上

C. 岁以下的男性人数比岁以上的女性人数多

D. 样本中岁以上的人对地铁一号线的开通关注度更高

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次抽奖活动中,有6人获得抽奖机会,抽奖规则如下:若获一等奖后不再参加抽奖,获得二等奖的仍参加三等奖抽奖.现在主办方先从6人中随机抽取2人均获一等奖,再从余下的4人中随机抽取1人获二等奖,最后还从这4人中随机抽取1人获三等奖.

1)求能获一等奖的概率;

2)若已获一等奖,求能获奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若关于的不等式上恒成立,求的取值范围;

(Ⅱ)设函数,在(Ⅰ)的条件下,试判断上是否存在极值.若存在,判断极值的正负;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,在区间上有最大值,最小值,设函数.

1)求的值;

2)不等式上恒成立,求实数的取值范围;

3)方程有三个不同的实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,,,为椭圆上的两动点,且以,,四个点为顶点的凸四边形的面积的最大值为

1)求椭圆的离心率;

2)若椭圆经过点,且直线的斜率是直线的斜率的等比中项,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行四边形中,,,,四边形为矩形,平面平面,,点在线段上运动,且.

1)当时,求异面直线所成角的大小;

2)设平面与平面所成二面角的大小为),求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧面是矩形,,且.

(1)求证:平面平面

(2)设的中点,判断并证明在线段上是否存在点,使平面,若存在,求点到平面的距离.

查看答案和解析>>

同步练习册答案