精英家教网 > 高中数学 > 题目详情
在△ABC中,已知tanA,tanB是方程3x2-7x+2=0的两个实根,则tanC=
-7
-7
分析:首先根据韦达定理表示出两根之和tanA+tanB与两根之积tanAtanB,然后根据三角形的内角和为π,把角C变形为π-(A+B),利用诱导公式化简后,然后再利用两角和的正切函数公式化简,把tanA+tanB与tanAtanB代入即可求出值.
解答:解:∵tanA,tanB是方程3x2-7x+2=0的两个根,
则tanA+tanB=
7
3
,tanAtanB=
2
3

∴tanC=tan[π-(A+B)]=-tan(A+B)=-
tanA+tanB
1-tanAtanB
=-
7
3
1-
2
3
=-7
故答案为:-7
点评:此题考查学生灵活运用韦达定理、诱导公式及两角和的正切函数公式化简求值,本题解题的关键是利用三角形本身的隐含条件,即三角形内角和是180°
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,已知B(-3,0),C(3,0),D为线段BC上一点,
AD
BC
=0
,H是△ABC的垂心,且
AH
=3
HD

(Ⅰ)求点H的轨迹M的方程;
(Ⅱ)若过C点且斜率为-
1
2
的直线与轨迹M交于点P,点Q(t,0)是x轴上任意一点,求当△CPQ为锐角三角形时t的取值范围.

查看答案和解析>>

科目:高中数学 来源:南通高考密卷·数学(理) 题型:013

在△ABC中,已知三边a,b,c成等差数列,且有sinB+cosB=t,则t的取值范围是

[  ]

A.(0,)
B.(1,)
C.(0,1)
D.(,+∞)

查看答案和解析>>

科目:高中数学 来源:上杭一中、武平一中、长汀一中、漳平一中2006-2007学年第一学期高三期末考数学试题(理) 题型:044

在△ABC中,已知B(-3,0),C(3,0),D为线段BC上一点,是△ABC的垂心,且

(1)求点H的轨迹M的方程;

(2)若过C点且斜率为的直线与轨迹M交于点P,点Q(t,0)是x轴上任意一点,

求:当△CPQ为锐角三角形时t的取值范围.

查看答案和解析>>

科目:高中数学 来源:2004年江苏省无锡市高三调研数学试卷(解析版) 题型:解答题

在△ABC中,已知B(-3,0),C(3,0),D为线段BC上一点,,H是△ABC的垂心,且
(Ⅰ)求点H的轨迹M的方程;
(Ⅱ)若过C点且斜率为的直线与轨迹M交于点P,点Q(t,0)是x轴上任意一点,求当△CPQ为锐角三角形时t的取值范围.

查看答案和解析>>

科目:高中数学 来源:江苏省陆慕高级中学09-10学年高二上学期第一次测试 题型:解答题

 

在△ABC中,已知

  (Ⅰ) 求证: ||=||;

(Ⅱ) 若||=||=,求|t|的最小值以及相应的t的值.

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案