【题目】如图,,,是由直线引出的三个不重合的半平面,其中二面角大小为60°,在二面角内绕直线旋转,圆在内,且圆在,内的射影分别为椭圆,.记椭圆,的离心率分别为,,则的取值范围是( )
A.B.C.D.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,,底面ABCD是边长为3的正方形,EFG分别是棱ABPBPC的中点,,.
(Ⅰ)求证:平面EFG∥平面PAD;
(Ⅱ)求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等腰直角三角形中,,点在边上,垂直交于,如图①.将沿折起,使到达的位置,且使平面平面,连接,,如图②.
(Ⅰ)若为的中点,,求证:;
(Ⅱ)若,当三棱锥的体积最大时,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知极坐标系的极点在平面直角坐标系的原点处,极轴与轴的非负半轴重合,且长度单位相同,直线的极坐标方程为,曲线(为参数).其中.
(1)试写出直线的直角坐标方程及曲线的普通方程;
(2)若点为曲线上的动点,求点到直线距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}的前n项和为Sn,公比q>0,S2=2a2-2,S3=a4-2,数列{an}满足a2=4b1,nbn+1-(n+1)bn=n2+n,(n∈N*).
(1)求数列{an}的通项公式;
(2)证明数列{}为等差数列;
(3)设数列{cn}的通项公式为:Cn=,其前n项和为Tn,求T2n.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】图1是由菱形,平行四边形和矩形组成的一个平面图形,其中,,,,将其沿,折起使得与重合,如图2.
(1)证明:图2中的平面平面;
(2)求图2中点到平面的距离;
(3)求图2中二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在等差数列中,,.令,数列的前项和为.
(1)求数列的通项公式;
(2)求数列的前项和;
(3)是否存在正整数,(),使得,,成等比数列?若存在,求出所有的,的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】司机在开机动车时使用手机是违法行为,会存在严重的安全隐患,危及自己和他人的生命. 为了研究司机开车时使用手机的情况,交警部门调查了名机动车司机,得到以下统计:在名男性司机中,开车时使用手机的有人,开车时不使用手机的有人;在名女性司机中,开车时使用手机的有人,开车时不使用手机的有人.
(1)完成下面的列联表,并判断是否有的把握认为开车时使用手机与司机的性别有关;
开车时使用手机 | 开车时不使用手机 | 合计 | |
男性司机人数 | |||
女性司机人数 | |||
合计 |
(2)以上述的样本数据来估计总体,现交警部门从道路上行驶的大量机动车中随机抽检3辆,记这3辆车中司机为男性且开车时使用手机的车辆数为,若每次抽检的结果都相互独立,求的分布列和数学期望.
参考公式与数据:
参考数据:
参考公式
span>,其中.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com