精英家教网 > 高中数学 > 题目详情
15.在△ABC中,a+b=3c,则cosA•cosB•cosC的最大值为(  )
A.$\frac{7}{81}$B.$\frac{1}{8}$C.$\frac{1}{9}$D.$\frac{8}{81}$

分析 由a+b=3c,利用余弦定理与基本不等式的性质可得cosC≥$\frac{7}{9}$.于是cosA•cosB•cosC=$\frac{1}{2}[cos(A-B)+cos(A+B)]cosC$≤$\frac{1}{2}(1-cosC)cosC$=f(C),
由于cosC∈$[\frac{7}{9},1)$,利用二次函数的单调性即可得出.

解答 解:∵a+b=3c,∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{{a}^{2}+{b}^{2}-\frac{(a+b)^{2}}{9}}{2ab}$=$\frac{4({a}^{2}+{b}^{2})-ab}{9ab}$≥$\frac{8ab-ab}{9ab}$=$\frac{7}{9}$.
∴cosA•cosB•cosC=$\frac{1}{2}[cos(A-B)+cos(A+B)]cosC$≤$\frac{1}{2}(1-cosC)cosC$=f(C),
∵cosC∈$[\frac{7}{9},1)$,
f(C)=$-(cosC-\frac{1}{2})^{2}$+$\frac{1}{4}$≤$f(\frac{7}{9})$=$\frac{7}{81}$.
∴cosA•cosB•cosC的最大值为$\frac{7}{81}$.
故选:A.

点评 本题考查了余弦定理、基本不等式的性质、“积化和差”、诱导公式、二次函数的单调性,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.若不等式$\frac{x+2}{k}$>1+$\frac{x-3}{{k}^{2}}$的解是x>3,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在平行四边形ABCD中,对角线AC与BD交于点O,M为平行四边形ABCD所在平面内任意一点,给出如下结论:
①$\overrightarrow{AB}$+$\overrightarrow{AD}$=2$\overrightarrow{AO}$
②$\overrightarrow{MA}$+$\overrightarrow{MB}$+$\overrightarrow{MC}$+$\overrightarrow{MD}$=4$\overrightarrow{OM}$
③若M∈AB,则满足x2$\overrightarrow{OA}$+2x$\overrightarrow{OM}$+$\overrightarrow{OB}$=$\overrightarrow{0}$的实数x有无数个
④若M∈AB,且满足x2$\overrightarrow{OA}$+2x$\overrightarrow{OM}$+$\overrightarrow{OB}$=$\overrightarrow{0}$,则点M是AB的中点.
其中正确的结论是①④(填上你认为正确的所有结论序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知f(x)=1-sin($\frac{π}{2}$x+$\frac{π}{4}$),则f(1)+f(2)+…+f(50)=50.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在等比数列{an}中,
(1)a4=2,a7=8,求an
(2)a2+a5=18,a3+a6=9,an=1,求n;
(3)a3=2,a2+a4=$\frac{20}{3}$,求an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=x2-3|x|+$\frac{1}{4}$(x∈R)的单调递减区间是(-∞,-$\frac{3}{2}$],[0,$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数y=x2-2tx+1,若-1≤x≤1,求y的最大、最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.不等式组$\left\{\begin{array}{l}{|x-1|-3<0}\\{a-2x>0}\end{array}\right.$的解集为-2<x<3,则a的取值范围是(  )
A.a≤-4B.a=6C.a≤6D.a≥6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.关于x的一元二次方程x2-x-(m+1)=0有两个不相等的正实数根,求m的取值范围.

查看答案和解析>>

同步练习册答案