精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)求函数在区间[1,2]上的最大值;

(2)设在(0,2)内恰有两个极值点,求实数m的取值范围.

【答案】(1);(2).

【解析】

(1)对函数求导,判断函数单调性,由单调性即可得到函数的最值;(2)先求出f′(x),由题意知:mx2﹣4x+m=0在(0,2)有两个变号零点,即在(0,2)有两个变号零点,构造函数,利用导数求出最值即可.

(1)p′(x)=ex

p″(x)=ex+>0恒成立

所以p′(x)=ex在[1,2]单调递增,

p'(1)=e﹣3<0,x0(1,2),使p'(x0)=0,

x[1,x0]时,p'(x)<0,px)单调递减;

x[x0,2]时,p'(x)>0,px)单调递增.

>e+2

px)在[1,2]上的最大值为p(2)=e2﹣3ln2+2.

(2)

由题意知:=0在(0,2)有两个变号零点,

(0,2)有两个变号零点

x=1,且时,g(x)单调递增;g(x)单调递减,

又g(0)=0,g(1)=2,g(2)=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若上存在极大值,求的取值范围;

2)若轴是曲线的一条切线,证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知锐角ABC中,内角所对应的边分别为,且满足:,则的取值范围是____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆的左、右焦点,椭圆过点.

(1)求椭圆的方程;

(2)过点的直线(不过坐标原点)与椭圆交于两点,且点轴上方轴下方,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线在第一象限内的点到焦点F的距离为

(1)求抛物线的方程;

(2)若直线与抛物线C相交于AB两点,与圆相交于DE两点,O为坐标原点,,试问:是否存在实数a,使得|DE|的长为定值?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足为等比数列,且

1)求

2)设,记数列的前项和为

①求

②求正整数 k,使得对任意均有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某蔬果经销商销售某种蔬果,售价为每公斤25元,成本为每公斤15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价以每公斤10元处理完.根据以往的销售情况,得到如图所示的频率分布直方图:

(1)根据频率分布直方图计算该种蔬果日需求量的平均数(同一组中的数据用该组区间中点值代表);

(2)该经销商某天购进了250公斤这种蔬果,假设当天的需求量为公斤,利润为元.求关于的函数关系式,并结合频率分布直方图估计利润不小于1750元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方形ABCD中,EF分别是BCCD的中点,GEF的中点,现在沿AEAFEF把这个正方形折成一个空间图形,使BCD三点重合,重合后的点记为H,那么,在这个空间图形中必有(  )

A. 所在平面B. 所在平面

C. 所在平面D. 所在平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的左、右焦点分别为,且点与椭圆C的上顶点构成边长为2的等边三角形.

1)求椭圆C的方程;

2)已知直线l与椭圆C相切于点P,且分别与直线和直线相交于点.试判断是否为定值,并说明理由.

查看答案和解析>>

同步练习册答案