精英家教网 > 高中数学 > 题目详情
17.一个不透明圆锥体的正视图和侧视图(左视图)为两全等的正三角形,若将它倒立放在桌面上(即圆锥体的顶点在桌面上),则该圆锥体在桌面上从垂直位置旋转到水平位置的过程中,其在水平桌面上正投影不可能是(  )
A.
   圆形区域
B.
等腰三角形两腰与半椭圆围成的区域
C.
等腰三角形两腰与半圆围成的区域
D.
   椭圆形区域

分析 对几何体的运动中的不同形态,几何体的正射影的认识,逐一分析可得结果.

解答 解:A图是不透明圆锥体倒立放在桌面上的正投影;
B是几何体旋转后能够看到不透明圆锥体的顶点时的情况;
C这是不可能存在的情况,右侧不会出现半圆形;
D是不透明圆锥体倒立放在桌面上,开始旋转,而没有看到它的顶点时的情况.
故选:C

点评 本题考查几何体的三视图,考查空间想象能力,运动变化的观点是解好本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若|sinα|=sin(-π+α),则α的取值范围是{α|-π+2kπ≤α≤2kπ,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,AB⊥AC,则BC边的平方等于另外两边平方和.即AB2+AC2=BC2,类比得到空间中相应结论为在四面体P-ABC中,平面PAB、平面PBC、平面PCA两两垂直,则△ABC面积的平方等于三个直角三角形面积的平方和.即$S_{△ABC}^2=S_{△PAB}^2+S_{△PBC}^2+S_{△PCA}^2$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知一工厂生产某种产品的年固定成本为100万元,每生产1千件需另投入27万元.设该工厂一年内生产这种产品x千件并全部销售完,每千件的销售收入为p(x)万元,且$p(x)=\left\{\begin{array}{l}108-\frac{1}{3}{x^2},0<x≤10\\ \frac{1080}{x}-\frac{10000}{{3{x^2}}},x>10\end{array}\right.$
(Ⅰ)写出年利润f(x)(万元)关于年产量x(千件)的函数关系式;
(Ⅱ)年产量为多少千件时,该工厂在这种产品的生产中所获得的年利润最大?
(注:年利润=年销售收入-年总成本)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若f(x)=lnx+x2•f′(1),则方程f′(x)=0的解集为$\{\frac{\sqrt{2}}{2}\}$(请用列举法表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知正实数a,b,c,若a2+b2+4c2=1,则ab+2ac+3$\sqrt{2}$bc的最大值为(  )
A.1B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax2+bx(a≠0)的导函数f′(x)=-2x+7,数列{an}的前n项和为Sn,点Pn(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(1)求数列{an}的通项公式;
(2)求Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\sqrt{3}$sinωx+cosωx(其中ω>0)的图象与x轴交点的横坐标构成一个公差为$\frac{π}{2}$的等差数列,把函数f(x)的图象沿x轴向左平移$\frac{π}{6}$个单位得到函数g(x)的图象,则g(x)的单调递减区间是(  )
A.[kπ,$\frac{π}{2}$+kπ],k∈ZB.[-$\frac{π}{2}$+kπ,kπ],k∈Z
C.[-$\frac{π}{4}$+kπ,$\frac{π}{4}$+kπ],k∈ZD.[$\frac{π}{4}$+kπ,$\frac{3π}{4}$+kπ],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,A,A′,B分别是椭圆顶点,从椭圆上一点P向x轴作垂线,垂足为左焦点F,且AB∥OP,则椭圆的离心率为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案